OFFSET
1,2
COMMENTS
The Zeckendorf polynomials Z(x,n) are defined and ordered at A207813. Each power 2^k appears F(k+1) times, where F=A000045 (Fibonacci numbers).
Conjecture: a(n) is also the reverse binarization of the Zeckendorf representation of n in base Fibonacci. For example, 11 = 1x8 + 0x5 +1x3 +0x2 + 0x1, so 11 =10100 in base Fibonacci. Now read that as binary but in reverse, 00101 = 101 = 5 = A207873(11). - George Beck, Sep 02 2020
LINKS
Sajed Haque, Discriminators of Integer Sequences, Thesis, 2017, See p. 36.
MATHEMATICA
fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k],
AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n],
{n, 1, 500}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
Table[p[n, x], {n, 1, 40}]
Denominator[Table[p[n, x] /. x -> 1/2,
{n, 1, 120}]] (* A207872 *)
Numerator[Table[p[n, x] /. x -> 1/2,
{n, 1, 120}]] (* A207873 *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
Clark Kimberling, Feb 21 2012
STATUS
approved