|
|
A140513
|
|
Repeat 2^n n times.
|
|
8
|
|
|
2, 4, 4, 8, 8, 8, 16, 16, 16, 16, 32, 32, 32, 32, 32, 64, 64, 64, 64, 64, 64, 128, 128, 128, 128, 128, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 512, 512, 512, 512, 512, 512, 512, 512, 512, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024, 1024
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Reinhard Zumkeller, Rows n = 0..127 of triangle, flattened
Sajed Haque, Chapter 2.6.2 of Discriminators of Integer Sequences, 2017, See p. 34.
|
|
FORMULA
|
a(n) = 2*A137688(n).
a(n) = A018900(n+1) - A059268(n). - Reinhard Zumkeller, Jun 24 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
Seen as a triangle read by rows: T(n,k)=2^n, 1 <= k <= n.
T(n,k) = A173786(n-1,k-1) + A173787(n-1,k-1), 1 <= k <= n. (End)
Sum_{n>=0} 1/a(n) = 2. - Amiram Eldar, Aug 16 2022
|
|
MATHEMATICA
|
t={}; Do[r={}; Do[If[k==0||k==n, m=2^n, m=t[[n, k]] + t[[n, k + 1]]]; r=AppendTo[r, m], {k, 0, n}]; AppendTo[t, r], {n, 0, 10}]; t=Flatten[2 t] (* Vincenzo Librandi, Feb 17 2018 *)
Table[Table[2^n, n], {n, 10}]//Flatten (* Harvey P. Dale, Dec 04 2018 *)
|
|
PROG
|
(Haskell)
a140513 n k = a140513_tabl !! (n-1) !! (k-1)
a140513_row n = a140513_tabl !! (n-1)
a140513_tabl = iterate (\xs@(x:_) -> map (* 2) (x:xs)) [2]
a140513_list = concat a140513_tabl
-- Reinhard Zumkeller, Nov 14 2015
|
|
CROSSREFS
|
Cf. A000079, A018900, A059268, A111650, A137688.
Sequence in context: A034583 A076347 A207872 * A265322 A188112 A333194
Adjacent sequences: A140510 A140511 A140512 * A140514 A140515 A140516
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Paul Curtz, Jul 01 2008
|
|
STATUS
|
approved
|
|
|
|