

A059268


Concatenate subsequences [2^0, 2^1, ..., 2^n] for n = 0, 1, 2, ...


24



1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32, 64, 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1, 2, 4, 8, 16, 32, 64
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Triangular array T(n,k) read by rows, where T(n,k) = i!*j! times coefficient of x^n*y^k in exp(x+2y).
a(n) = A018900(n+1)  A140513(n).  Reinhard Zumkeller, Jun 24 2009
T(n,k) = A173786(n1,k1)  A173787(n1,k1), 0<k<=n.  Reinhard Zumkeller, Feb 28 2010
T(n,k) is the number of subsets of {0,1,...,n} whose largest element is k. To see this, let A be any subset of the 2^k subsets of {0,1,...,k1}. Then there are 2^k subsets of the form (A U {k}). See example below.  Dennis P. Walsh, Nov 27 2011
Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements. A059268 is reluctant sequence of sequence A000079.  Boris Putievskiy, Dec 17 2012


LINKS

Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened
J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles, arXiv:math/0109108 [math.NT], 2001.
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.


FORMULA

E.g.f.: exp(x+2*y) (T coordinates).
T(n,k) = 2^k.  Reinhard Zumkeller, Jan 29 2010
As a linear array, the sequence is a(n) = 2^((n1t(t+1)/2), where t = floor((1+sqrt(8*n7))/2), n>=1.  Boris Putievskiy, Dec 17 2012
As a linear array, the sequence is a(n) = 2^((n1t(t+1)/2), where t = floor(sqrt(2*n)1/2), n>=1.  Zhining Yang, Jun 09 2017


EXAMPLE

T(4,3)=8 since there are 8 subsets of {0,1,2,3,4} whose largest element is 3, namely, {3}, {0,3}, {1,3}, {2,3}, {0,1,3}, {0,2,3}, {1,2,3}, and {0,1,2,3}.
Triangle starts:
1;
1, 2;
1, 2, 4;
1, 2, 4, 8;
1, 2, 4, 8, 16;
1, 2, 4, 8, 16, 32;
...


MAPLE

seq(seq(2^k, k=0..n), n=0..10);


MATHEMATICA

Table[2^k, {n, 0, 11}, {k, 0, n}] // Flatten (* JeanFrançois Alcover, Jun 10 2013 *)


PROG

(Haskell)
a059268 n k = a059268_tabl !! n !! k
a059268_row n = a059268_tabl !! n
a059268_tabl = iterate (scanl (+) 1) [1]
 Reinhard Zumkeller, Apr 18 2013, Jul 05 2012


CROSSREFS

Cf. A140531.
Cf. A000079.
Cf. A131816.
Sequence in context: A059250 A303696 A131074 * A300653 A256009 A123937
Adjacent sequences: A059265 A059266 A059267 * A059269 A059270 A059271


KEYWORD

nonn,tabl


AUTHOR

N. J. A. Sloane, Jan 23 2001


EXTENSIONS

Formula corrected by Reinhard Zumkeller, Feb 23 2010


STATUS

approved



