login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059268 Concatenate subsequences [2^0, 2^1, ..., 2^n] for n = 0, 1, 2, ... 24
1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32, 64, 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1, 2, 4, 8, 16, 32, 64 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Triangular array T(n,k) read by rows, where T(n,k) = i!*j! times coefficient of x^n*y^k in exp(x+2y).

a(n) = A018900(n+1) - A140513(n). - Reinhard Zumkeller, Jun 24 2009

T(n,k) = A173786(n-1,k-1) - A173787(n-1,k-1), 0<k<=n. - Reinhard Zumkeller, Feb 28 2010

T(n,k) is the number of subsets of {0,1,...,n} whose largest element is k. To see this, let A be any subset of the 2^k subsets of {0,1,...,k-1}. Then there are 2^k subsets of the form (A U {k}). See example below. - Dennis P. Walsh, Nov 27 2011

Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements. A059268 is reluctant sequence of sequence A000079. - Boris Putievskiy, Dec 17 2012

LINKS

Reinhard Zumkeller, Rows n = 0..150 of triangle, flattened

J. L. Arregui, Tangent and Bernoulli numbers related to Motzkin and Catalan numbers by means of numerical triangles, arXiv:math/0109108 [math.NT], 2001.

Boris Putievskiy, Transformations Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.

FORMULA

E.g.f.: exp(x+2*y) (T coordinates).

T(n,k) = 2^k. - Reinhard Zumkeller, Jan 29 2010

As a linear array, the sequence is a(n) = 2^((n-1-t(t+1)/2), where t = floor((-1+sqrt(8*n-7))/2), n>=1. - Boris Putievskiy, Dec 17 2012

As a linear array, the sequence is a(n) = 2^((n-1-t(t+1)/2), where t = floor(sqrt(2*n)-1/2), n>=1. - Zhining Yang, Jun 09 2017

EXAMPLE

T(4,3)=8 since there are 8 subsets of {0,1,2,3,4} whose largest element is 3, namely, {3}, {0,3}, {1,3}, {2,3}, {0,1,3}, {0,2,3}, {1,2,3}, and {0,1,2,3}.

Triangle starts:

1;

1, 2;

1, 2, 4;

1, 2, 4, 8;

1, 2, 4, 8, 16;

1, 2, 4, 8, 16, 32;

...

MAPLE

seq(seq(2^k, k=0..n), n=0..10);

MATHEMATICA

Table[2^k, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 10 2013 *)

PROG

(Haskell)

a059268 n k = a059268_tabl !! n !! k

a059268_row n = a059268_tabl !! n

a059268_tabl = iterate (scanl (+) 1) [1]

-- Reinhard Zumkeller, Apr 18 2013, Jul 05 2012

CROSSREFS

Cf. A140531.

Cf. A000079.

Cf. A131816.

Sequence in context: A059250 A303696 A131074 * A300653 A256009 A123937

Adjacent sequences:  A059265 A059266 A059267 * A059269 A059270 A059271

KEYWORD

nonn,tabl

AUTHOR

N. J. A. Sloane, Jan 23 2001

EXTENSIONS

Formula corrected by Reinhard Zumkeller, Feb 23 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 21 06:03 EDT 2018. Contains 316405 sequences. (Running on oeis4.)