OFFSET
0,3
COMMENTS
Size of largest clique in graph with vertices {0,1}^n, edges joining points with distance <= k.
By considering balls of radius k, a(n,2*k) >= A008949(n,k).
By considering Cartesian products, a(n1 + n2, k1 + k2) >= a(n1,k1)*a(n2,k2).
a(n,0) = 1.
a(n,1) = 2 for n >= 1.
a(n,n) = 2^n.
a(n,2) = n + 1 for n >= 2.
a(n,n-1) = 2^(n-1).
a(n,3) >= 2n for n >= 4, and this appears to be an equality. - Robert Israel, Apr 20 2016
LINKS
MathOverflow question, Isoperimetric inequality on the Hamming cube
EXAMPLE
Triangle begins
1
1 2
1 2 4
1 2 4 8
1 2 5 8 16
1 2 6 10 16 32
1 2 7 12 22 32 64
1 2 8 14 29 44 64 128
1 2 9 16 37 58 93 128 256
a(4,2) = 5: a suitable set of diameter <= 2 is {0000, 0001, 0010, 0100, 1000}.
MAPLE
clist:= proc(c, n) local V;
V:= Vector(n);
V[convert(c, list)]:= 1;
convert(V, list);
end proc:
f:= proc(n, k)
uses GraphTheory, combinat;
local Verts, dist, E, G, V0, G0, vk, Vk, G1;
if k = 0 then return 1
elif k >= n then return 2^n
fi;
Verts:= map(clist, convert(powerset(n), list), n);
dist:= Matrix(2^n, 2^n, shape=symmetric, (i, j) -> convert(abs~(Verts[i]-Verts[j]), `+`));
E:= select(e -> dist[e[1], e[2]]<=k, {seq(seq({i, j}, j=i+1..2^n), i=1..2^n)});
G:= Graph(2^n, E);
V0:= Neighborhood(G, 1, 'open');
G0:= InducedSubgraph(G, V0);
vk:= select(j -> dist[1, j] = k, V0);
Vk:= Neighborhood(G0, vk[1], 'open');
G1:= InducedSubgraph(G0, Vk);
CliqueNumber(G1)+2;
end proc:
seq(seq(f(n, k), k=0..n), n=0..6);
PROG
(MATLAB with CPLEX API)
function s = A256009( n, k )
if k == 0
s = 1;
return;
elseif k >= n
s = 2^n;
return;
end
cplex = Cplex('problem');
H = dec2bin(0:2^n-1) - '0';
cplex.Model.sense = 'maximize';
cplex.Param.mip.display.Cur = 0;
obj = ones(2^n, 1);
ctype = char('B'*ones(1, 2^n));
cplex.addCols(obj, [], zeros(2^n, 1), [], ctype);
R = sum(H, 2) * ones(1, 2^n);
D = R + R' - 2*H*H';
[ros, cols] = find(triu(D) > k);
ncons = numel(ros);
for i=1:ncons
cplex.addSOSs('1', [ros(i), cols(i)]', [1, 2]');
end
cplex.solve();
s = cplex.Solution.objval;
end
CROSSREFS
KEYWORD
AUTHOR
Robert Israel, May 06 2015
STATUS
approved