login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256009
Triangle read by rows: Largest cardinality of a set of Hamming diameter <= k in {0,1}^n, k <= n.
1
1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 5, 8, 16, 1, 2, 6, 10, 16, 32, 1, 2, 7, 12, 22, 32, 64, 1, 2, 8, 14, 29, 44, 64, 128, 1, 2, 9, 16, 37, 58, 93, 128, 256
OFFSET
0,3
COMMENTS
Size of largest clique in graph with vertices {0,1}^n, edges joining points with distance <= k.
By considering balls of radius k, a(n,2*k) >= A008949(n,k).
By considering Cartesian products, a(n1 + n2, k1 + k2) >= a(n1,k1)*a(n2,k2).
a(n,0) = 1.
a(n,1) = 2 for n >= 1.
a(n,n) = 2^n.
a(n,2) = n + 1 for n >= 2.
a(n,n-1) = 2^(n-1).
a(n,3) >= 2n for n >= 4, and this appears to be an equality. - Robert Israel, Apr 20 2016
EXAMPLE
Triangle begins
1
1 2
1 2 4
1 2 4 8
1 2 5 8 16
1 2 6 10 16 32
1 2 7 12 22 32 64
1 2 8 14 29 44 64 128
1 2 9 16 37 58 93 128 256
a(4,2) = 5: a suitable set of diameter <= 2 is {0000, 0001, 0010, 0100, 1000}.
MAPLE
clist:= proc(c, n) local V;
V:= Vector(n);
V[convert(c, list)]:= 1;
convert(V, list);
end proc:
f:= proc(n, k)
uses GraphTheory, combinat;
local Verts, dist, E, G, V0, G0, vk, Vk, G1;
if k = 0 then return 1
elif k >= n then return 2^n
fi;
Verts:= map(clist, convert(powerset(n), list), n);
dist:= Matrix(2^n, 2^n, shape=symmetric, (i, j) -> convert(abs~(Verts[i]-Verts[j]), `+`));
E:= select(e -> dist[e[1], e[2]]<=k, {seq(seq({i, j}, j=i+1..2^n), i=1..2^n)});
G:= Graph(2^n, E);
V0:= Neighborhood(G, 1, 'open');
G0:= InducedSubgraph(G, V0);
vk:= select(j -> dist[1, j] = k, V0);
Vk:= Neighborhood(G0, vk[1], 'open');
G1:= InducedSubgraph(G0, Vk);
CliqueNumber(G1)+2;
end proc:
seq(seq(f(n, k), k=0..n), n=0..6);
PROG
(MATLAB with CPLEX API)
function s = A256009( n, k )
if k == 0
s = 1;
return;
elseif k >= n
s = 2^n;
return;
end
cplex = Cplex('problem');
H = dec2bin(0:2^n-1) - '0';
cplex.Model.sense = 'maximize';
cplex.Param.mip.display.Cur = 0;
obj = ones(2^n, 1);
ctype = char('B'*ones(1, 2^n));
cplex.addCols(obj, [], zeros(2^n, 1), [], ctype);
R = sum(H, 2) * ones(1, 2^n);
D = R + R' - 2*H*H';
[ros, cols] = find(triu(D) > k);
ncons = numel(ros);
for i=1:ncons
cplex.addSOSs('1', [ros(i), cols(i)]', [1, 2]');
end
cplex.solve();
s = cplex.Solution.objval;
end
CROSSREFS
Cf. A008949.
Sequence in context: A131074 A059268 A300653 * A123937 A138882 A074634
KEYWORD
nonn,tabl,more
AUTHOR
Robert Israel, May 06 2015
STATUS
approved