login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131074
Triangular array T read by rows: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.
11
1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 0, 1, 3, 7, 15, 0, 0, 1, 4, 11, 26, 0, 0, 0, 1, 5, 16, 42, 0, 0, 0, 0, 1, 6, 22, 64, 1, 1, 1, 1, 1, 2, 8, 30, 94, 1, 2, 3, 4, 5, 6, 8, 16, 46, 140, 1, 2, 4, 7, 11, 16, 22, 30, 46, 92, 232, 1, 2, 4, 8, 15, 26, 42, 64, 94, 140, 232, 464, 0, 1, 3, 7, 15, 30, 56, 98
OFFSET
1,3
COMMENTS
All columns are periodic with period length 8. The (4+8*i)-th row equals the first (4+8*i) terms of the main diagonal (i >= 0). Main diagonal and eighth subdiagonal agree; generally j-th subdiagonal equals (j+8)-th subdiagonal.
EXAMPLE
First seven rows of T are
[ 1 ]
[ 1, 2 ]
[ 1, 2, 4 ]
[ 1, 2, 4, 8 ]
[ 0, 1, 3, 7, 15 ]
[ 0, 0, 1, 4, 11, 26 ]
[ 0, 0, 0, 1, 5, 16, 42 ].
MATHEMATICA
T[j_, 1] := If[Mod[j-1, 8]<4, 1, 0]; T[j_, k_] := T[j, k] = T[j-1, k-1]+T[j, k-1]; Table[T[j, k], {j, 1, 13}, {k, 1, j}] // Flatten (* Jean-François Alcover, Mar 06 2014 *)
PROG
(PARI) {m=13; M=matrix(m, m); for(j=1, m, M[j, 1]=if((j-1)%8<4, 1, 0)); for(k=2, m, for(j=k, m, M[j, k]=M[j-1, k-1]+M[j, k-1])); for(j=1, m, for(k=1, j, print1(M[j, k], ", ")))}
(Magma) m:=13; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; &cat[ [ M[j, k]: k in [1..j] ]: j in [1..m] ];
CROSSREFS
Cf. A131022, A129961 (main diagonal of T), A131075 (first subdiagonal of T), A131076 (row sums of T), A131077 (antidiagonal sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.
Sequence in context: A168266 A059250 A303696 * A059268 A300653 A256009
KEYWORD
nonn,tabl
AUTHOR
Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007
STATUS
approved