login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131075
First subdiagonal of triangular array T: T(j,1) = 1 for ((j-1) mod 8) < 4, else 0; T(j,k) = T(j-1,k-1) + T(j,k-1) for 2 <= k <= j.
4
1, 2, 4, 7, 11, 16, 22, 30, 46, 92, 232, 628, 1652, 4096, 9544, 21000, 43912, 87824, 169120, 315952, 578096, 1048576, 1913440, 3567072, 6874336, 13748672, 28384384, 59797312, 126906176, 268435456, 561834112, 1158971520, 2353246336
OFFSET
1,2
COMMENTS
Also first differences of main diagonal A129961.
FORMULA
a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 7, a(5) = 11; for n > 5, a(n) = 6*a(n-1)-14*a(n-2)+16*a(n-3)-10*a(n-4)+4*a(n-5).
G.f.: (1-4*x+6*x^2-5*x^3+3*x^4)/((1-2*x)*(1-4*x+6*x^2-4*x^3+2*x^4)).
EXAMPLE
For first seven rows of T see A131074 or A129961.
PROG
(Magma) m:=34; M:=ZeroMatrix(IntegerRing(), m, m); for j:=1 to m do if (j-1) mod 8 lt 4 then M[j, 1]:=1; end if; end for; for k:=2 to m do for j:=k to m do M[j, k]:=M[j-1, k-1]+M[j, k-1]; end for; end for; [ M[n+1, n]: n in [1..m-1] ];
(PARI) {m=33; v=concat([1, 2, 4, 7, 11], vector(m-5)); for(n=6, m, v[n]=6*v[n-1]-14*v[n-2]+16*v[n-3]-10*v[n-4]+4*v[n-5]); v}
CROSSREFS
Cf. A131074 (T read by rows), A129961 (main diagonal of T), A131076 (row sums of T), A131077 (antidiagonal sums of T). First through sixth column of T are in A131078, A131079, A131080, A131081, A131082, A131083 resp.
Sequence in context: A177176 A005689 A212365 * A365698 A133523 A114805
KEYWORD
nonn
AUTHOR
Klaus Brockhaus, following a suggestion of Paul Curtz, Jun 14 2007
STATUS
approved