login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177176
Partial sums of round(n^2/13).
2
0, 0, 0, 1, 2, 4, 7, 11, 16, 22, 30, 39, 50, 63, 78, 95, 115, 137, 162, 190, 221, 255, 292, 333, 377, 425, 477, 533, 593, 658, 727, 801, 880, 964, 1053, 1147, 1247, 1352, 1463, 1580, 1703, 1832, 1968, 2110, 2259, 2415, 2578, 2748, 2925, 3110, 3302
OFFSET
0,5
COMMENTS
The round function is defined here by round(x) = floor(x + 1/2).
LINKS
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
FORMULA
a(n) = round(n*(n+1)*(2*n+1)/78).
a(n) = floor((n+3)*(2*n^2 - 3*n + 10)/78).
a(n) = ceiling((n-2)*(2*n^2 + 7*n + 15)/78).
a(n) = a(n-13) + (n+1)*(n-13) + 63, n > 12.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-13) - 3*a(n-14) + 3*a(n-15) - a(n-16) with g.f. x^3*(1+x)*(x^2 - x + 1)*(x^6 - x^5 + x^4 - x^3 + x^2 - x + 1) / ( (x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ). - R. J. Mathar, Dec 13 2010
EXAMPLE
a(13) = 0 + 0 + 0 + 1 + 1 + 2 + 3 + 4 + 5 + 6 + 8 + 9 + 11 + 13 = 63.
MAPLE
seq(round(n*(n+1)*(2*n+1)/78), n=0..50)
PROG
(PARI) s=0; vector(90, n, s+=n^2\13)
(Magma) [Round(n*(n+1)*(2*n+1)/78): n in [0..60]]; // Vincenzo Librandi, Jun 23 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 10 2010
STATUS
approved