OFFSET
0,5
COMMENTS
Partial sums of A008740(n-3). [Corrected by Gerald Hillier, Dec 24 2017]
The round function, also called the nearest integer function, is defined here by round(x)=floor(x+1/2).
There are several sequences of integers of the form round(n^2/k) for whose partial sums we can establish identities as following (only for k = 2,...,9,11,12,13,16,17,19,20, 28,29,36,44).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions, J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,1,0,0,0,0,0,1,-3,3,-1).
FORMULA
a(n) = round((n-1)*(n+2)*(2*n+1)/54);
a(n) = floor((n+3)*(2*n^2-3*n+6)/54);
a(n) = ceiling((n-2)*(2*n^2+7*n+11)/54);
a(n) = round((2*n^3+3*n^2-3*n)/54);
a(n) = a(n-9) + (n+1)*(n-9) + 31, n > 8.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-9) - 3*a(n-10) + 3*a(n-11) - a(n-12). - R. J. Mathar, Mar 11 2012
G.f.: x^3*(x+1)*(x^4-x^3+x^2-x+1)/((x-1)^4*(x^2+x+1)*(x^6+x^3+1)). - Colin Barker, Oct 10 2012
EXAMPLE
a(9) = 0+0+0+1+2+3+4+5+7+9 = 31.
MAPLE
seq(round((2*n^3+3*n^2-3*n)/54), n=0..50)
MATHEMATICA
Accumulate[Round[Range[0, 80]^2/9]] (* Harvey P. Dale, Apr 06 2017 *)
PROG
(PARI) a(n)=(n+3)*(2*n^2-3*n+6)\54 \\ Charles R Greathouse IV, Sep 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Dec 09 2010
STATUS
approved