OFFSET
0,4
COMMENTS
Maximum Wiener index of all maximal 5-degenerate graphs with n vertices. (A maximal 5-degenerate graph can be constructed from a 5-clique by iteratively adding a new 5-leaf (vertex of degree 5) adjacent to 5 existing vertices.) The extremal graphs are 5th powers of paths, so the bound also applies to 5-trees. - Allan Bickle, Sep 15 2022
LINKS
Allan Bickle and Zhongyuan Che, Wiener indices of maximal k-degenerate graphs, arXiv:1908.09202 [math.CO], 2019.
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
A. N. W. Hone, Algebraic curves, integer sequences and a discrete Painlevé transcendent, Proceedings of SIDE 6, Helsinki, Finland, 2004; arXiv:0807.2538 [nlin.SI], 2008. [Set a(n)=d(n+3) on p. 8]
Brian O'Sullivan and Thomas Busch, Spontaneous emission in ultra-cold spin-polarised anisotropic Fermi seas, arXiv 0810.0231 [quant-ph], 2008. [Eq 10a, lambda=5]
FORMULA
Conjectures from R. J. Mathar, Jul 15 2008: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8);
o.g.f.: x^2/((x^4+x^3+x^2+x+1)(x-1)^4). (End)
Conjecture: a(n) = (A000292(n+1) - n - 2 - (-1)^floor((n-1)/5)*A099443(n+1))/5. - R. J. Mathar, Jul 15 2008
a(n+2) = A144679(n) + A144679(n-1) + A144679(n-2) + A144679(n-3) + A144679(n-4). - Johannes W. Meijer, May 20 2011
a(n) = floor((n^3 + 6*n^2 + 5*n)/30). - Allan Bickle, Sep 15 2022
MATHEMATICA
p[n_] := p[n] = Cancel[Simplify[(x^(n - 1)p[n - 1]p[n - 5] + p[n - 2]*p[n - 4])/p[n - 6]]]; p[ -6] = 1; p[ -5] = 1; p[ -4] = 1; p[ -3] = 1; p[ -2] = 1; p[ -1] = 1; Table[Exponent[p[n], x], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Roger L. Bagula, Sep 13 2006
EXTENSIONS
Edited by N. J. A. Sloane, Jul 15 2008
a(22)-a(43) from R. J. Mathar, Jul 15 2008
STATUS
approved