login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122048
a(n) = (n-2)*a(n-2) - a(n-3), with a(0)=0, a(1)=1, a(2)=2.
2
0, 1, 2, 1, 3, 1, 11, 2, 65, 3, 518, -38, 5177, -936, 62162, -17345, 871204, -322337, 13956609, -6350933, 251541299, -134624336, 5037176913, -3078652355, 110952516422, -75846181078, 2665939046483, -2007107043372, 69390261389636, -56857829217527, 1944934425953180
OFFSET
0,3
LINKS
FORMULA
a(n) = (n-2)*a(n-2) - a(n-3).
MAPLE
a:= proc (n) option remember;
if n < 3 then n
elif n = 3 then 1
else (n-2)*a(n-2) - a(n-3)
end if
end proc:
seq(a(n), n = 0..35); # G. C. Greubel, Oct 04 2019
MATHEMATICA
a[0]=0; a[1]=1; a[2]=2; a[n_]:= a[n]= (n-2)*a[n-2] - a[n-3]; Table[a[n], {n, 0, 35}]
PROG
(PARI) my(m=35, v=concat([0, 1, 2, 1], vector(m-4))); for(n=5, m, v[n] = (n-3)*v[n-2] - v[n-3] ); v \\ G. C. Greubel, Oct 04 2019
(Magma) I:=[0, 1, 2, 1]; [n le 4 select I[n] else (n-3)*Self(n-2) - Self(n-3): n in [1..35]]; // G. C. Greubel, Oct 04 2019
(Sage)
def a(n):
if n<3: return n
elif n==3: return 1
else: return (n-2)*a(n-2) - a(n-3)
[a(n) for n in (0..35)] # G. C. Greubel, Oct 04 2019
(GAP) a:=[0, 1, 2, 1];; for n in [5..35] do a[n]:=(n-3)*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Oct 04 2019
CROSSREFS
Cf. A122021.
Sequence in context: A237978 A337276 A098570 * A046208 A195909 A195697
KEYWORD
sign
AUTHOR
Roger L. Bagula, Sep 13 2006
EXTENSIONS
Offset changed by G. C. Greubel, Oct 04 2019
STATUS
approved