login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A195697
First denominator and then numerator in a fraction expansion of log(2) - Pi/8.
6
2, 1, 3, -1, 12, 1, 30, 1, 35, -1, 56, 1, 90, 1, 99, -1, 132, 1, 182, 1, 195, -1, 240, 1, 306, 1, 323, -1, 380, 1, 462, 1, 483, -1, 552, 1, 650, 1, 675, -1, 756, 1, 870, 1, 899, -1, 992, 1, 1122, 1, 1155, -1, 1260
OFFSET
1,1
COMMENTS
The minus sign in front of a fraction is considered the sign of the numerator.
REFERENCES
Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116. Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
FORMULA
log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
Empirical g.f.: x*(2+x+x^2-2*x^3+9*x^4+2*x^5+14*x^6-2*x^7+3*x^8+2*x^9+3*x^10-2*x^11+x^13) / ((1-x)^3*(1+x)^3*(1-x+x^2)^2*(1+x+x^2)^2). - Colin Barker, Dec 17 2015
EXAMPLE
1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ... ] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
KEYWORD
frac,sign
AUTHOR
Mohammad K. Azarian, Sep 25 2011
STATUS
approved