login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A168056
Expansion of (1+2*x^2+x^3)/((1-x)^2*(1+x+x^2)).
6
1, 1, 3, 5, 5, 7, 9, 9, 11, 13, 13, 15, 17, 17, 19, 21, 21, 23, 25, 25, 27, 29, 29, 31, 33, 33, 35, 37, 37, 39, 41, 41, 43, 45, 45, 47, 49, 49, 51, 53, 53, 55, 57, 57, 59, 61, 61, 63, 65, 65, 67, 69, 69, 71, 73, 73, 75, 77, 77, 79, 81, 81, 83, 85, 85, 87, 89, 89, 91, 93, 93
OFFSET
0,3
FORMULA
G.f.: (1+2*x^2+x^3)/((1-x)^2*(1+x+x^2)).
a(n) = A168057(n)/2^n.
a(n) = (12*n+3+6*cos(2*n*Pi/3)-2*sqrt(3)*sin(2*n*Pi/3))/9. - Wesley Ivan Hurt, Sep 30 2017
MATHEMATICA
LinearRecurrence[{1, 0, 1, -1}, {1, 1, 3, 5}, 100] (* G. C. Greubel, Jul 07 2016 *)
CoefficientList[Series[(1 + 2 x^2 + x^3) / ((1 - x)^2 (1 + x + x^2)), {x, 0, 80}], x] (* Vincenzo Librandi, Jul 08 2016 *)
PROG
(Magma) I:=[1, 1, 3, 5]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..70]]; // Vincenzo Librandi, Jul 08 2016
CROSSREFS
Cf. A168053.
Sequence in context: A131421 A088743 A219844 * A122800 A227950 A378356
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 17 2009
STATUS
approved