login
A168055
Expansion of 2 - x - sqrt(1-2x-3x^2).
4
1, 0, 2, 2, 4, 8, 18, 42, 102, 254, 646, 1670, 4376, 11596, 31022, 83670, 227268, 621144, 1706934, 4713558, 13072764, 36398568, 101704038, 285095118, 801526446, 2259520830, 6385455594, 18086805002, 51339636952, 146015545604
OFFSET
0,3
COMMENTS
Hankel transform is A168054.
LINKS
FORMULA
a(n+2) = 2*A001006(n).
a(n) = 0^n + 2*Sum_{k=0..floor((n-2)/2)} C(n-2,2k)*A000108(k).
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) if n>0. - Michael Somos, Jan 25 2014
D-finite with recurrence: n*a(n) +(-2*n+3)*a(n-1) +3*(-n+3)*a(n-2)=0. - R. J. Mathar, Nov 19 2014
EXAMPLE
G.f. = 1 + 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, n}] (* Michael Somos, Jan 25 2014 *)
PROG
(PARI) {a(n) = polcoeff( 2 - x - sqrt(1 - 2*x - 3*x^2 + x * O(x^n)), n)} /* Michael Somos, Jan 25 2014 */
CROSSREFS
Cf. A168049.
Cf. A126068, A007971. [R. J. Mathar, Nov 18 2009]
Sequence in context: A007971 A126068 A167022 * A005702 A095335 A283117
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 17 2009
EXTENSIONS
Name corrected by Michael Somos, Mar 23 2012
STATUS
approved