login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126068
Expansion of 1 - x - sqrt(1 - 2*x - 3*x^2) in powers of x.
3
0, 0, 2, 2, 4, 8, 18, 42, 102, 254, 646, 1670, 4376, 11596, 31022, 83670, 227268, 621144, 1706934, 4713558, 13072764, 36398568, 101704038, 285095118, 801526446, 2259520830, 6385455594, 18086805002, 51339636952, 146015545604
OFFSET
0,3
COMMENTS
Except for initial terms, identical to A007971.
LINKS
FORMULA
G.f.: 1 - x - sqrt(1 - 2*x - 3*x^2). - Michael Somos, Jan 25 2014
0 = a(n) * (9*a(n+1) + 15*a(n+2) - 12*a(n+3)) + a(n+1) * (-3*a(n+1) + 10*a(n+2) - 5*a(n+3)) + a(n+2) * (a(n+2) + a(n+3)) if n>0. - Michael Somos, Jan 25 2014
a(n) ~ 3^(n-1/2)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 20 2014
EXAMPLE
G.f. = 2*x^2 + 2*x^3 + 4*x^4 + 8*x^5 + 18*x^6 + 42*x^7 + 102*x^8 + 254*x^9 + ...
MAPLE
zl:=4*(1-z+sqrt(1-2*z-3*z^2))/(1-z+sqrt(1-2*z-3*z^2))^2: gser:=series(zl, z=0, 35): seq(coeff(gser, z, n), n=-2..27);
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, n}]; (* Michael Somos, Jan 25 2014 *)
CoefficientList[Series[1 - x - Sqrt[1 - 2 x - 3 x^2], {x, 0, 40}], x] (* Vincenzo Librandi, Apr 20 2014 *)
PROG
(PARI) {a(n) = polcoeff( (1 - x - sqrt(1 - 2*x - 3*x^2 + x * O(x^n))), n)}; /* Michael Somos, Jan 25 2014 */
CROSSREFS
Cf. A007971.
Sequence in context: A139800 A168058 A007971 * A167022 A168055 A005702
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Feb 28 2007
EXTENSIONS
Better name by Michael Somos, Jan 25 2014
STATUS
approved