login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126067
Triangle read by rows: T(n,k) is the number of unlabeled self-converse digraphs with n nodes and k arcs, k=0..n*(n-1).
1
1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 5, 9, 10, 12, 10, 9, 5, 3, 1, 1, 1, 1, 3, 6, 15, 24, 41, 57, 77, 84, 90, 84, 77, 57, 41, 24, 15, 6, 3, 1, 1, 1, 1, 3, 7, 20, 42, 91, 164, 295, 463, 683, 918, 1185, 1394, 1550, 1590, 1550, 1394, 1185, 918, 683, 463, 295, 164, 91, 42, 20, 7, 3, 1, 1
OFFSET
0,8
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..2680 (rows 0..20)
EXAMPLE
Triangle begins:
1;
1;
1,1,1;
1,1,2,2,2,1,1;
1,1,3,5,9,10,12,10,9,5,3,1,1;
1,1,3,6,15,24,41,57,77,84,90,84,77,57,41,24,15,6,3,1,1;
....
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(c=gcd(v[i], v[j])*if(v[i]*v[j]%2==0, 2, 1)); t(2*v[i]*v[j]/c)^c)) * prod(i=1, #v, my(c=v[i]); if(c%2, t(2*c)^(c\2), t(c)^(c-1-c%4/2)*t(c/2)^(c%4)))}
Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i)); Vecrev(s)/n!}
{ for(n=0, 5, print(Row(n))) } \\ Andrew Howroyd, Apr 19 2020
CROSSREFS
Row sums are A002499.
Sequence in context: A346118 A309797 A199840 * A327490 A346529 A238408
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Feb 28 2007
EXTENSIONS
a(0)=1 prepended and terms a(46) and beyond from Andrew Howroyd, Apr 19 2020
STATUS
approved