login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A327490 T(n, k) = 1 + IFF(k - 1, n - k), where IFF is Boolean equality evaluated bitwise on the inputs, triangle read by rows, T(n, k) for n >= 1, 1 <= k <= n. 3
1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 4, 2, 4, 2, 4, 3, 3, 3, 3, 3, 3, 2, 4, 2, 4, 2, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 8, 2, 4, 2, 8, 2, 4, 2, 8, 7, 7, 3, 3, 7, 7, 3, 3, 7, 7, 6, 8, 6, 4, 6, 8, 6, 4, 6, 8, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

If row(n) has, seen as a set, only one element k then k is either 1 or 1 + 2^n and n has the form 2^n or 3*2^n.

LINKS

Table of n, a(n) for n=1..78.

EXAMPLE

                               1

                              1, 1

                            2, 2, 2

                           1, 1, 1, 1

                         4, 2, 4, 2, 4

                        3, 3, 3, 3, 3, 3

                      2, 4, 2, 4, 2, 4, 2

                     1, 1, 1, 1, 1, 1, 1, 1

                   8, 2, 4, 2, 8, 2, 4, 2, 8

                  7, 7, 3, 3, 7, 7, 3, 3, 7, 7

                6, 8, 6, 4, 6, 8, 6, 4, 6, 8, 6

               5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5

MAPLE

A327490 := (n, k) -> 1 + Bits:-Iff(k-1, n-k):

seq(seq(A327490(n, k), k=1..n), n=1..12);

CROSSREFS

Cf. A327488 (Nand), A327489 (Nor), A280172 (Xor).

Sequence in context: A309797 A199840 A126067 * A346529 A238408 A048858

Adjacent sequences:  A327487 A327488 A327489 * A327491 A327492 A327493

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Sep 22 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 23 14:40 EDT 2021. Contains 347618 sequences. (Running on oeis4.)