login
A327490
T(n, k) = 1 + IFF(k - 1, n - k), where IFF is Boolean equality evaluated bitwise on the inputs, triangle read by rows, T(n, k) for n >= 1, 1 <= k <= n.
4
1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 4, 2, 4, 2, 4, 3, 3, 3, 3, 3, 3, 2, 4, 2, 4, 2, 4, 2, 1, 1, 1, 1, 1, 1, 1, 1, 8, 2, 4, 2, 8, 2, 4, 2, 8, 7, 7, 3, 3, 7, 7, 3, 3, 7, 7, 6, 8, 6, 4, 6, 8, 6, 4, 6, 8, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
OFFSET
1,4
COMMENTS
If row(n) has, seen as a set, only one element k then k is either 1 or 1 + 2^n and n has the form 2^n or 3*2^n.
EXAMPLE
1
1, 1
2, 2, 2
1, 1, 1, 1
4, 2, 4, 2, 4
3, 3, 3, 3, 3, 3
2, 4, 2, 4, 2, 4, 2
1, 1, 1, 1, 1, 1, 1, 1
8, 2, 4, 2, 8, 2, 4, 2, 8
7, 7, 3, 3, 7, 7, 3, 3, 7, 7
6, 8, 6, 4, 6, 8, 6, 4, 6, 8, 6
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
MAPLE
A327490 := (n, k) -> 1 + Bits:-Iff(k-1, n-k):
seq(seq(A327490(n, k), k=1..n), n=1..12);
CROSSREFS
Cf. A327488 (Nand), A327489 (Nor), A280172 (Xor).
Sequence in context: A309797 A199840 A126067 * A346529 A238408 A048858
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 22 2019
STATUS
approved