login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327493
a(n) = 2^A327492(n).
6
1, 4, 8, 32, 128, 512, 1024, 4096, 32768, 131072, 262144, 1048576, 4194304, 16777216, 33554432, 134217728, 2147483648, 8589934592, 17179869184, 68719476736, 274877906944, 1099511627776, 2199023255552, 8796093022208, 70368744177664, 281474976710656, 562949953421312
OFFSET
0,2
FORMULA
a(n) = denominator(b(n)) where b(n) = n!/(2^n*floor(n/2)!)^2 is the normalized swinging factorial (A056040).
MAPLE
A327493 := n -> 2^(A327492_list(n+1)[n+1]):
seq(A327493(n), n = 0..26);
PROG
(PARI) seq(n)={my(a=vector(n+1)); a[1]=1; for(n=1, n, a[n+1] = a[n] * 2^if(n%4, n%2 + 1, valuation(n, 2))); a} \\ Andrew Howroyd, Sep 28 2019
(PARI) a(n)={ denominator(sum(j=0, n, j!/(2^j*(j\2)!)^2)) } \\ Andrew Howroyd, Sep 28 2019
(Julia)
bitcount(n) = sum(digits(n, base = 2))
A327493(n) = 2^(2n - bitcount(n) + mod(n, 2))
[A327493(n) for n in 0:26] |> println # Peter Luschny, Oct 03 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Sep 27 2019
STATUS
approved