login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199840
Triangle read by rows: T(n,k) is the number of 2-multigraphs on n nodes having exactly k edges, with n >= 1 and 0 <= k <= n*(n-1).
1
1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 3, 5, 8, 9, 12, 9, 8, 5, 3, 1, 1, 1, 1, 3, 6, 14, 24, 43, 62, 87, 100, 110, 100, 87, 62, 43, 24, 14, 6, 3, 1, 1, 1, 1, 3, 7, 18, 40, 91, 180, 352, 616, 1006, 1483, 2036, 2522, 2891, 3012, 2891, 2522, 2036, 1483, 1006, 616, 352, 180, 91, 40, 18, 7, 3, 1, 1
OFFSET
1,7
COMMENTS
Here a 2-multigraph is an unlabeled graph with at most 2 edges connecting any vertex pair with no self loops allowed.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..2680 (first 20 rows)
EXAMPLE
Triangle begins:
1;
1, 1, 1;
1, 1, 2, 2, 2, 1, 1;
1, 1, 3, 5, 8, 9, 12, 9, 8, 5, 3, 1, 1;
...
MATHEMATICA
Table[CoefficientList[Expand[PairGroupIndex[SymmetricGroup[n], s] /. Table[s[i]->1+x^i+x^(2i), {i, 1, Binomial[n, 2]}]], x], {n, 1, 6}]
(* Second program: *)
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]] ]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c - 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
row[n_] := Module[{s=0}, Do[s += permcount[p]*edges[p, 1 + x^# + x^(2#)&], {p, IntegerPartitions[n]}]; s/n!] // Expand // CoefficientList[#, x]&;
Array[row, 6] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
Row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*edges(p, i->1+x^i+(x^2)^i)); Vecrev(s/n!)}
{ for(n=1, 6, print(Row(n))) } \\ Andrew Howroyd, Nov 07 2019
CROSSREFS
Row sums are A004102.
Cf. A008406.
Sequence in context: A232439 A346118 A309797 * A126067 A327490 A346529
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Nov 11 2011
EXTENSIONS
Terms a(46) and beyond from Andrew Howroyd, Nov 07 2019
STATUS
approved