login
A199838
Number of -n..n arrays x(0..8) of 9 elements with zero sum and no two neighbors summing to zero.
1
66, 23206, 645780, 6715618, 41008804, 179213048, 622300326, 1827026482, 4719970500, 11025201168, 23740333870, 47800415256, 90973748554, 165038447302, 287293180292, 482460245532, 785043786046, 1242210635346, 1917265955424
OFFSET
1,1
COMMENTS
Row 7 of A199832.
LINKS
FORMULA
Empirical: a(n) = (259723/2240)*n^8 - (299869/5040)*n^7 + (39757/1440)*n^6 - (8303/360)*n^5 + (31829/2880)*n^4 - (8083/720)*n^3 + (32213/5040)*n^2 - (509/420)*n.
Conjectures from Colin Barker, Mar 02 2018: (Start)
G.f.: 2*x*(33 + 11306*x + 219651*x^2 + 866735*x^3 + 937667*x^4 + 283090*x^5 + 18897*x^6 + 128*x^7) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=3:
.-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3....0
.-3...-3...-3....2....2....2....2....1...-1....0...-1...-3....2....0....1...-3
.-1...-1....0....1...-1....0....0...-3...-1....2....0...-1....3....1...-2...-2
..2....0...-3...-3...-2....1....2....1....2...-1....2...-1....1....2....1....3
..0....2....2...-3....3...-3....0....3....2....0....2....3...-2....1....3...-1
.-1....0....3...-2....0...-1...-3...-1...-3...-3....0....3...-3....3...-1...-2
..3....3....0....3...-1....2...-1....3....0....0....1....0....1....0....2....3
..3....0....2....2....0....1....2....1....2....3...-2....3....2...-1....2...-1
..0....2....2....3....2....1....1...-2....2....2....1...-1...-1...-3...-3....3
CROSSREFS
Cf. A199832.
Sequence in context: A355470 A356688 A167778 * A188453 A278848 A110150
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved