login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A199838
Number of -n..n arrays x(0..8) of 9 elements with zero sum and no two neighbors summing to zero.
1
66, 23206, 645780, 6715618, 41008804, 179213048, 622300326, 1827026482, 4719970500, 11025201168, 23740333870, 47800415256, 90973748554, 165038447302, 287293180292, 482460245532, 785043786046, 1242210635346, 1917265955424
OFFSET
1,1
COMMENTS
Row 7 of A199832.
LINKS
FORMULA
Empirical: a(n) = (259723/2240)*n^8 - (299869/5040)*n^7 + (39757/1440)*n^6 - (8303/360)*n^5 + (31829/2880)*n^4 - (8083/720)*n^3 + (32213/5040)*n^2 - (509/420)*n.
Conjectures from Colin Barker, Mar 02 2018: (Start)
G.f.: 2*x*(33 + 11306*x + 219651*x^2 + 866735*x^3 + 937667*x^4 + 283090*x^5 + 18897*x^6 + 128*x^7) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>9.
(End)
EXAMPLE
Some solutions for n=3:
.-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3...-3....0
.-3...-3...-3....2....2....2....2....1...-1....0...-1...-3....2....0....1...-3
.-1...-1....0....1...-1....0....0...-3...-1....2....0...-1....3....1...-2...-2
..2....0...-3...-3...-2....1....2....1....2...-1....2...-1....1....2....1....3
..0....2....2...-3....3...-3....0....3....2....0....2....3...-2....1....3...-1
.-1....0....3...-2....0...-1...-3...-1...-3...-3....0....3...-3....3...-1...-2
..3....3....0....3...-1....2...-1....3....0....0....1....0....1....0....2....3
..3....0....2....2....0....1....2....1....2....3...-2....3....2...-1....2...-1
..0....2....2....3....2....1....1...-2....2....2....1...-1...-1...-3...-3....3
CROSSREFS
Cf. A199832.
Sequence in context: A355470 A356688 A167778 * A188453 A278848 A110150
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved