login
A199836
Number of -n..n arrays x(0..6) of 7 elements with zero sum and no two neighbors summing to zero.
1
22, 1650, 20240, 118280, 462234, 1402934, 3579520, 8046928, 16426926, 31082698, 55316976, 93593720, 151783346, 237431502, 360051392, 531439648, 766015750, 1081184994, 1497725008, 2040195816, 2737373450, 3622707110, 4734799872
OFFSET
1,1
COMMENTS
Row 5 of A199832.
LINKS
FORMULA
Empirical: a(n) = (5887/180)*n^6 - (1013/60)*n^5 + (245/36)*n^4 - (35/12)*n^3 + (157/45)*n^2 - (6/5)*n.
Conjectures from Colin Barker, May 16 2018: (Start)
G.f.: 2*x*(11 + 748*x + 4576*x^2 + 5240*x^3 + 1167*x^4 + 32*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
..0....1...-2...-1...-1....3....0....1...-1....1...-2...-2....0....2...-1....0
.-1....0....1...-1...-2....1....3....1...-3....0....3...-1....1...-1...-3....2
.-1....1....3...-1...-1...-3...-1...-2....1...-1....2....2...-2...-1...-2....1
.-1...-3....3....3....3...-3...-2....0...-2...-3....0....1....1...-2....1...-2
..2...-3...-2...-1....3....0....3...-1....3....2...-2....2....1....1....2...-3
..1....1...-1....0...-2....3...-1....0....1....1....1....1....0...-2....0....0
..0....3...-2....1....0...-1...-2....1....1....0...-2...-3...-1....3....3....2
CROSSREFS
Cf. A199832.
Sequence in context: A243478 A245658 A277664 * A196705 A196854 A196948
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved