login
A277664
4th-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2.
6
0, 0, 22, 1638, 47454, 904530, 13529862, 172576362, 1966038698, 20583987894, 201838423616, 1878183167916, 16744919877108, 144061342087884, 1202594886126228, 9783039293041644, 77823360967288812, 607079393002409364, 4654603707195506610, 35144449267872359562, 261740341786424075106
OFFSET
0,3
COMMENTS
These numbers provide the 4th order of the 1/N-expansion of traces of powers of a random time-delay matrix in presence of time-reversal symmetry. (The 0th order is instead given by the Large Schröder numbers A006318.)
LINKS
F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Large-N expansion for the time-delay matrix of ballistic chaotic cavities, J. Math. Phys. 57, 111901 (2016).
J. Kuipers, M. Sieber and D. Savin, Efficient semiclassical approach for time delays, New J. Phys. 16 (2014), 123018.
FORMULA
G.f.: (2*(36*z^7+20*z^6+24*z^5-219*z^4+216*z^3+163*z^2+6*z))/(y(z)^(11/2)) +(2*(12*z^8-132*z^7+618*z^6-1830*z^5+1840*z^4+720*z^3-134*z^2-6*z))/(y(z)^6), where y(z)= z^2-6*z+1.
a(n) ~ 37 * (3*sqrt(2)+4)^(11/2) * n^(9/2) * (1+sqrt(2))^(2*n-8) / (9 * 2^(19/2) * sqrt(Pi)) * (1 - 12*sqrt(2*Pi*(4+3*sqrt(2)))/(37*sqrt(n))). - Vaclav Kotesovec, Oct 27 2016
MATHEMATICA
y[z] := z^2 - 6*z + 1; CoefficientList[Series[(2*(36*z^7 + 20*z^6 + 24*z^5 - 219*z^4 + 216*z^3 + 163*z^2 + 6*z))/(y[z]^(11/2)) + (2*(12*z^8 - 132*z^7 + 618*z^6 - 1830*z^5 + 1840*z^4 + 720*z^3 - 134*z^2 - 6*z))/(y[z]^6), {z, 0, 50}], z] (* G. C. Greubel, Jan 29 2017 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Fabio Deelan Cunden, Oct 26 2016
EXTENSIONS
More terms from Michel Marcus, Nov 01 2016
STATUS
approved