login
A277662
2nd-order coefficients of the 1/N-expansion of traces of negative powers of real Wishart matrices with parameter c=2.
6
0, 0, 6, 102, 1142, 10650, 89576, 705012, 5297924, 38478492, 272262050, 1887071274, 12862479402, 86468603910, 574580180020, 3780504491400, 24663229376872, 159709443132888, 1027505285362590, 6572573611318158, 41827041105943870, 264959521695360786, 1671472578046156512, 10504743400858155708
OFFSET
0,3
COMMENTS
These numbers provide the 2nd order of the 1/N-expansion of traces of powers of a random time-delay matrix in presence of time-reversal symmetry. (The 0th order is given by the Large Schröder numbers A006318.)
LINKS
F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Large-N expansion for the time-delay matrix of ballistic chaotic cavities, J. Math. Phys. 57, 111901 (2016).
J. Kuipers, M. Sieber and D. Savin, Efficient semiclassical approach for time delays, New J. Phys. 16 (2014), 123018.
FORMULA
G.f.: (x^2-3*x)/((x^2-6*x+1)^2)+(3*x^3-4*x^2+3 x)/((x^2-6*x+1)^(5/2)).
a(n) ~ 7*(3*sqrt(2)+4)^(5/2) * n^(3/2) * (1+sqrt(2))^(2*n-4) / (3*2^(9/2)*sqrt(Pi)) * (1 - (3*sqrt((2+3/sqrt(2))*Pi))/(7*sqrt(n))). - Vaclav Kotesovec, Oct 27 2016
MATHEMATICA
CoefficientList[Series[(x^2 - 3 x)/((x^2 - 6 x + 1)^2) + (3 x^3 - 4 x^2 + 3 x)/((x^2 - 6 x + 1)^(5/2)), {x, 0, 23}], x] (* Michael De Vlieger, Oct 26 2016 *)
CROSSREFS
Cf. A006318 (0th order), A277661 (1st order), A277663 (3rd order), A277664 (4th order), A277665 (5th order).
Sequence in context: A065990 A306406 A344400 * A371250 A022025 A302911
KEYWORD
nonn
AUTHOR
Fabio Deelan Cunden, Oct 26 2016
EXTENSIONS
More terms from Michael De Vlieger, Oct 26 2016
STATUS
approved