|
|
A022025
|
|
Define the sequence S(a(0),a(1)) by a(n+2) is the least integer such that a(n+2)/a(n+1) > a(n+1)/a(n) for n >= 0. This is S(6,102).
|
|
11
|
|
|
6, 102, 1735, 29513, 502028, 8539699, 145263729, 2470994700, 42032617843, 714991805825, 12162299391068, 206885624804179, 3519208035780561, 59863150041598764, 1018296359995701043, 17321632357467588641, 294647962336362325244, 5012080843035687303187
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..811
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993;.
|
|
FORMULA
|
The conjectured g.f. (6-5*x^2)/(1-17*x-x^2+14*x^3) yields the same initial terms a(0..271) but from a(272) on a different sequence. - Bruno Berselli and M. F. Hasler, Feb 11 2016
a(n+1) = floor(a(n)^2/a(n-1))+1 for all n > 0. - M. F. Hasler, Feb 10 2016
|
|
MAPLE
|
a:= proc(n) option remember;
`if`(n<2, [6, 102][n+1], floor(a(n-1)^2/a(n-2))+1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Sep 18 2015
|
|
MATHEMATICA
|
a[n_] := a[n] = Switch[n, 0, 6, 1, 102, _, 1 + Floor[a[n-1]^2/a[n-2]]];
a /@ Range[0, 20] (* Jean-François Alcover, Nov 16 2020, after Alois P. Heinz *)
|
|
PROG
|
(PARI) a=[6, 102]; for(n=2, 30, a=concat(a, a[n]^2\a[n-1]+1)); a \\ M. F. Hasler, Feb 10 2016
|
|
CROSSREFS
|
Cf. A022018 - A022024, A022026 - A022032.
Sequence in context: A306406 A344400 A277662 * A302911 A174481 A306205
Adjacent sequences: A022022 A022023 A022024 * A022026 A022027 A022028
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. K. Guy
|
|
EXTENSIONS
|
An incorrect program was removed by Alois P. Heinz, Apr 27 2019
|
|
STATUS
|
approved
|
|
|
|