OFFSET
0,1
COMMENTS
The empirical g.f. / recurrence agrees with the original definition for at least 2000 terms (and a(2000) ~ 10^1430). - M. F. Hasler, Feb 11 2016
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
FORMULA
Empirical g.f.: -(x^6+x^5+x^4+x^3-x-5) / (x^7+x^6+x^5+x^4-x^2-5*x+1). - Colin Barker, Sep 18 2015
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for all n > 0. - M. F. Hasler, Feb 11 2016
MATHEMATICA
(* This empirical recurrence should not be used to extend the data. *) LinearRecurrence[{5, 1, 0, -1, -1, -1, -1}, {5, 26, 135, 700, 3629, 18813, 97527}, 24] (* Jean-François Alcover, Dec 12 2016 *)
PROG
(PARI) a=[5, 26]; for(n=2, 2000, a=concat(a, ceil(a[n]^2/a[n-1])-1)); A022032(n)=a[n+1] \\ M. F. Hasler, Feb 11 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, Feb 11 2016
STATUS
approved