login
A022032
Define the sequence T(a(0),a(1)) by a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n) for n >= 0. This is T(5,26).
11
5, 26, 135, 700, 3629, 18813, 97527, 505582, 2620947, 13587040, 70435478, 365138879, 1892887004, 9812762803, 50869551972, 263708740319, 1367071205166, 7086923541985, 36738748574433, 190454382472052, 987319198674433, 5118281802804775, 26533271760636405, 137548993480193164
OFFSET
0,1
COMMENTS
The empirical g.f. / recurrence agrees with the original definition for at least 2000 terms (and a(2000) ~ 10^1430). - M. F. Hasler, Feb 11 2016
LINKS
FORMULA
Empirical g.f.: -(x^6+x^5+x^4+x^3-x-5) / (x^7+x^6+x^5+x^4-x^2-5*x+1). - Colin Barker, Sep 18 2015
a(n+1) = ceiling(a(n)^2/a(n-1))-1 for all n > 0. - M. F. Hasler, Feb 11 2016
MATHEMATICA
(* This empirical recurrence should not be used to extend the data. *) LinearRecurrence[{5, 1, 0, -1, -1, -1, -1}, {5, 26, 135, 700, 3629, 18813, 97527}, 24] (* Jean-François Alcover, Dec 12 2016 *)
PROG
(PARI) a=[5, 26]; for(n=2, 2000, a=concat(a, ceil(a[n]^2/a[n-1])-1)); A022032(n)=a[n+1] \\ M. F. Hasler, Feb 11 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by M. F. Hasler, Feb 11 2016
STATUS
approved