login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022034
Define the generalized Pisot sequence T(a(0),a(1)) by: a(n+2) is the greatest integer such that a(n+2)/a(n+1) < a(n+1)/a(n). This is T(6,31).
1
6, 31, 160, 825, 4253, 21924, 113017, 582596, 3003248, 15481566, 79806558, 411398091, 2120732851, 10932252540, 56355115894, 290507292601, 1497547928268, 7719771085196, 39794963809107, 205140687086569, 1057488120864155, 5451288779669969, 28101071561042234
OFFSET
0,1
COMMENTS
This coincides with the Pisot T(6,31) sequence as defined in A008776 at least up to n <=18000. - R. J. Mathar, Feb 13 2016
The recurrence 5*a(n-1)+a(n-2)-a(n-3)-a(n-5) starts to fail at n=22. - R. J. Mathar, Feb 13 2016
LINKS
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
MAPLE
a:= proc(n) option remember;
`if`(n<2, [6, 31][n+1], ceil(a(n-1)^2/a(n-2))-1)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 18 2015
MATHEMATICA
RecurrenceTable[{a[1] == 6, a[2] == 31, a[n] == Ceiling[a[n-1]^2/a[n-2]] - 1}, a, {n, 30}] (* Bruno Berselli, Feb 17 2016 *)
PROG
(PARI) T(a0, a1, maxn) = a=vector(maxn); a[1]=a0; a[2]=a1; for(n=3, maxn, a[n]=ceil(a[n-1]^2/a[n-2])-1); a
T(6, 31, 40) \\ Colin Barker, Feb 14 2016
(Magma) Tiv:=[6, 31]; [n le 2 select Tiv[n] else Ceiling(Self(n-1)^2/Self(n-2))-1: n in [1..30]]; // Bruno Berselli, Feb 17 2016
CROSSREFS
Sequence in context: A077352 A038223 A334650 * A277669 A047665 A003128
KEYWORD
nonn
AUTHOR
EXTENSIONS
Incorrect conjectures deleted by Alois P. Heinz, Sep 18 2015
STATUS
approved