OFFSET
0,2
COMMENTS
Suggested by the Steinbach heptagon polynomial p^3 - p^2*(1 - p) - 2*p(1 - p)^2 + (1 - p)^3 = (1 - 5 p + 6 p^2 - p^3). - Roger L. Bagula, Sep 20 2006
LINKS
S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG]. - From N. J. A. Sloane, Dec 26 2012
F. v. Lamoen, Wave sequences
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
Index entries for linear recurrences with constant coefficients, signature (6,-5,1).
FORMULA
Let v(3)=(1, 1, 1), let M(3) be the 3 X 3 matrix m(i, j) =min(i, j), so M(3)=(1, 1, 1)/(1, 2, 2)/(1, 2, 3); then a(n)= Max ( v(3)*M(3)^n) - Benoit Cloitre, Oct 03 2002
G.f.: 1/(1-6x+5x^2-x^3). - Roger L. Bagula and Gary W. Adamson, Sep 20 2006
MATHEMATICA
p[x_] := 1 - 5 x + 6 x^2 - x^3; q[x_] := ExpandAll[x^3*p[1/x]]; Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula, Sep 20 2006 *)
PROG
(PARI) k=3; M(k)=matrix(k, k, i, j, min(i, j)); v(k)=vector(k, i, 1); a(n)=vecmax(v(k)*M(k)^n)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Benoit Cloitre, Oct 03 2002
Edited by R. J. Mathar, Aug 02 2008
STATUS
approved