login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038223
Bottom line of 3-wave sequence A038196, also bisection of A006356.
3
1, 6, 31, 157, 793, 4004, 20216, 102069, 515338, 2601899, 13136773, 66326481, 334876920, 1690765888, 8536537209, 43100270734, 217609704247, 1098693409021, 5547212203625, 28007415880892, 141407127676248
OFFSET
0,2
COMMENTS
Suggested by the Steinbach heptagon polynomial p^3 - p^2*(1 - p) - 2*p(1 - p)^2 + (1 - p)^3 = (1 - 5 p + 6 p^2 - p^3). - Roger L. Bagula, Sep 20 2006
LINKS
S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, 2-frieze patterns and the cluster structure of the space of polygons, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG]. - From N. J. A. Sloane, Dec 26 2012
F. v. Lamoen, Wave sequences
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
FORMULA
Let v(3)=(1, 1, 1), let M(3) be the 3 X 3 matrix m(i, j) =min(i, j), so M(3)=(1, 1, 1)/(1, 2, 2)/(1, 2, 3); then a(n)= Max ( v(3)*M(3)^n) - Benoit Cloitre, Oct 03 2002
G.f.: 1/(1-6x+5x^2-x^3). - Roger L. Bagula and Gary W. Adamson, Sep 20 2006
MATHEMATICA
p[x_] := 1 - 5 x + 6 x^2 - x^3; q[x_] := ExpandAll[x^3*p[1/x]]; Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* Roger L. Bagula, Sep 20 2006 *)
PROG
(PARI) k=3; M(k)=matrix(k, k, i, j, min(i, j)); v(k)=vector(k, i, 1); a(n)=vecmax(v(k)*M(k)^n)
CROSSREFS
Sequence in context: A289788 A065096 A077352 * A334650 A022034 A277669
KEYWORD
nonn,easy
EXTENSIONS
More terms from Benoit Cloitre, Oct 03 2002
Edited by R. J. Mathar, Aug 02 2008
STATUS
approved