Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Sep 18 2015 12:31:19
%S 1,6,31,157,793,4004,20216,102069,515338,2601899,13136773,66326481,
%T 334876920,1690765888,8536537209,43100270734,217609704247,
%U 1098693409021,5547212203625,28007415880892,141407127676248
%N Bottom line of 3-wave sequence A038196, also bisection of A006356.
%C Suggested by the Steinbach heptagon polynomial p^3 - p^2*(1 - p) - 2*p(1 - p)^2 + (1 - p)^3 = (1 - 5 p + 6 p^2 - p^3). - _Roger L. Bagula_, Sep 20 2006
%H S. Morier-Genoud, V. Ovsienko and S. Tabachnikov, <a href="http://arxiv.org/abs/1008.3359">2-frieze patterns and the cluster structure of the space of polygons</a>, Annales de l'institut Fourier, 62 no. 3 (2012), 937-987; arXiv:1008.3359 [math.AG]. - From _N. J. A. Sloane_, Dec 26 2012
%H F. v. Lamoen, <a href="http://home.wxs.nl/~lamoen/wiskunde/wave.htm">Wave sequences</a>
%H P. Steinbach, <a href="http://www.jstor.org/stable/2691048">Golden fields: a case for the heptagon</a>, Math. Mag. 70 (1997), no. 1, 22-31.
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (6,-5,1).
%F Let v(3)=(1, 1, 1), let M(3) be the 3 X 3 matrix m(i, j) =min(i, j), so M(3)=(1, 1, 1)/(1, 2, 2)/(1, 2, 3); then a(n)= Max ( v(3)*M(3)^n) - _Benoit Cloitre_, Oct 03 2002
%F G.f.: 1/(1-6x+5x^2-x^3). - _Roger L. Bagula_ and _Gary W. Adamson_, Sep 20 2006
%t p[x_] := 1 - 5 x + 6 x^2 - x^3; q[x_] := ExpandAll[x^3*p[1/x]]; Table[ SeriesCoefficient[ Series[x/q[x], {x, 0, 30}], n], {n, 0, 30}] (* _Roger L. Bagula_, Sep 20 2006 *)
%o (PARI) k=3; M(k)=matrix(k,k,i,j,min(i,j)); v(k)=vector(k,i,1); a(n)=vecmax(v(k)*M(k)^n)
%K nonn,easy
%O 0,2
%A _Floor van Lamoen_
%E More terms from _Benoit Cloitre_, Oct 03 2002
%E Edited by _R. J. Mathar_, Aug 02 2008