login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038224
Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*6^j.
1
1, 3, 6, 9, 36, 36, 27, 162, 324, 216, 81, 648, 1944, 2592, 1296, 243, 2430, 9720, 19440, 19440, 7776, 729, 8748, 43740, 116640, 174960, 139968, 46656, 2187, 30618, 183708, 612360, 1224720, 1469664, 979776, 279936, 6561, 104976
OFFSET
0,2
REFERENCES
B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
EXAMPLE
1;
3,6;
9,36,36;
27,162,324,216;
81,648,1944,2592,1296;
243,2430,9720,19440,19440,7776;
729,8748,43740,116640,174960,139968,46656;
2187,30618,183708,612360,1224720,1469664,979776,279936;
MAPLE
A038224 := proc(n, k)
if k < 0 or k > n then
0;
else
binomial(n, k)*3^(n-k)*6^k ;
end if;
end proc: # R. J. Mathar, Mar 26 2013
MATHEMATICA
Table[Binomial[i, j]3^(i-j) 6^j, {i, 0, 10}, {j, 0, i}]//Flatten (* Harvey P. Dale, Feb 22 2020 *)
CROSSREFS
Sequence in context: A195205 A045638 A305322 * A133195 A196156 A103978
KEYWORD
nonn,tabl,easy
AUTHOR
STATUS
approved