Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Feb 22 2020 20:26:35
%S 1,3,6,9,36,36,27,162,324,216,81,648,1944,2592,1296,243,2430,9720,
%T 19440,19440,7776,729,8748,43740,116640,174960,139968,46656,2187,
%U 30618,183708,612360,1224720,1469664,979776,279936,6561,104976
%N Triangle whose (i,j)-th entry is binomial(i,j)*3^(i-j)*6^j.
%D B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121.
%e 1;
%e 3,6;
%e 9,36,36;
%e 27,162,324,216;
%e 81,648,1944,2592,1296;
%e 243,2430,9720,19440,19440,7776;
%e 729,8748,43740,116640,174960,139968,46656;
%e 2187,30618,183708,612360,1224720,1469664,979776,279936;
%p A038224 := proc(n,k)
%p if k < 0 or k > n then
%p 0;
%p else
%p binomial(n,k)*3^(n-k)*6^k ;
%p end if;
%p end proc: # _R. J. Mathar_, Mar 26 2013
%t Table[Binomial[i,j]3^(i-j) 6^j,{i,0,10},{j,0,i}]//Flatten (* _Harvey P. Dale_, Feb 22 2020 *)
%K nonn,tabl,easy
%O 0,2
%A _N. J. A. Sloane_.