login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305322
Repdigit numbers that are divisible by 3.
3
0, 3, 6, 9, 33, 66, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 3333, 6666, 9999, 33333, 66666, 99999, 111111, 222222, 333333, 444444, 555555, 666666, 777777, 888888, 999999, 3333333, 6666666, 9999999, 33333333, 66666666, 99999999, 111111111, 222222222
OFFSET
1,2
COMMENTS
The terms > 0 are (10^d-1)*k/9 for k=1..9 if d is divisible by 3, and for k=3,6,9 otherwise. - Robert Israel, Jun 01 2018
Repdigit remainders A010785(k) mod 3 have period 27. - Karl-Heinz Hofmann, Nov 11 2023
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1001,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1000).
FORMULA
From Alois P. Heinz, May 30 2018: (Start)
{ A008585 } intersect { A010785 }.
G.f.: 3*(300*x^20 + 200*x^19 + 100*x^18 + 330*x^17 + 220*x^16 + 110*x^15 + 333*x^14 + 296*x^13 + 259*x^12 + 222*x^11 + 185*x^10 + 148*x^9 + 111*x^8 + 74*x^7 + 37*x^6 + 33*x^5 + 22*x^4 + 11*x^3 + 3*x^2 + 2*x + 1)*x^2 / ((x-1) *(x^2 + x + 1) *(x^4 + x^3 + x^2 + x + 1) *(10*x^5-1) *(x^8 - x^7 + x^5 - x^4 + x^3 - x + 1) *(100*x^10 + 10*x^5 + 1)).
a(n) = 1001*a(n-15) - 1000*a(n-30). (End)
From Karl-Heinz Hofmann, Nov 11 2023: (Start)
a(n) = A010785(floor((n-1)/15)*27 + ((n-1) mod 15)*3) iff (n-1 <= 6 (mod 15)).
a(n) = A010785(floor((n-1)/15)*27 + ((n-1) mod 15) + 12) iff (n-1 > 6 (mod 15)).
(End)
EXAMPLE
111 / 3 = 37;
222 / 3 = 74;
333 / 3 = 111;
444 / 3 = 148;
555 / 3 = 185.
MAPLE
L:= proc(d) if d mod 3 = 0 then [$1..9] else [3, 6, 9] fi end proc:
0, seq(seq((10^d-1)/9*k, k=L(d)), d=1..9); # Robert Israel, Jun 01 2018
PROG
(Python)
def A010785(n): return (n - 9*((n-1)//9))*(10**((n+8)//9) - 1)//9
def A305322(n):
d0, d1 = divmod(n-1, 15)
if d1 < 7: return A010785(d0 * 27 + d1 * 3)
return A010785(d0 * 27 + d1 + 12) # Karl-Heinz Hofmann, Nov 26 2023
CROSSREFS
Cf. A002279 (divisor 5), A366596 (divisor 7), A083118 (the impossible divisors).
Sequence in context: A254616 A195205 A045638 * A038224 A133195 A196156
KEYWORD
nonn,base,easy
AUTHOR
Kritsada Moomuang, May 30 2018
EXTENSIONS
Name clarified by Felix Fröhlich, Jun 01 2018
STATUS
approved