login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305319
Triangle T(n,k) read by rows: coefficients in order of decreasing exponents of characteristic polynomial P_n(t) of the matrix M(i,j) = [(i+j>n) or (i+j)=n-1], 1 <= i,j <= n.
1
1, 1, -1, 1, -1, -1, 1, -3, 1, 1, 1, -2, -4, 1, 1, 1, -4, -1, 6, 1, -1, 1, -3, -8, 3, 9, 1, -1, 1, -5, -4, 15, 5, -11, -1, 1, 1, -4, -13, 8, 27, -3, -14, 1, 1, 1, -6, -8, 29, 15, -42, -6, 18, -1, -1, 1, -5, -19, 17, 60, -19, -63, 9, 21, -1, -1, 1, -7, -13, 49, 35, -110, -29, 93, 6, -25, -1, 1, 1, -6, -26, 31, 114, -58, -189, 45, 129, -10, -30, -1, 1
OFFSET
0,8
COMMENTS
Related to conjecture from entry A047211.
LINKS
Gheorghe Coserea, Rows n = 0..200, flattened
FORMULA
P(n) = det(t*I - M), where M(i,j) = [(i+j>n) or (i+j)=n-1], 1 <= i,j <= n.
P(n) = (2*t + 3*(-1)^n)*P(n-1) - (t^2 - 4)*P(n-2) - (2*t + 3*(-1)^n)*P(n-3) - P(n-4).
G.f.: A(x;t) = Sum_{n>=0} P(n)*x^n = (t*x^8 + (-t^2 + t - 1)*x^7 + (-t^3 + t^2 + 2*t + 1)*x^6 + (t^4 - 2*t^3 + t^2 + 2*t)*x^5 - t^2*x^4 + (-t^3 - t^2 + 2*t)*x^3 + (-t^2 - t)*x^2 + (t - 1)*x + 1)/(x^8 + (-2*t^2 + 1)*x^6 + t^4*x^4 + (-2*t^2 + 1)*x^2 + 1).
EXAMPLE
P(0) = 1;
P(1) = t - 1;
P(2) = t^2 - t - 1;
P(3) = t^3 - 3*t^2 + t + 1;
P(4) = t^4 - 2*t^3 - 4*t^2 + t + 1;
...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]
[0] 1
[1] 1, -1;
[2] 1, -1, -1;
[3] 1, -3, 1, 1;
[4] 1, -2, -4, 1, 1;
[5] 1, -4, -1, 6, 1, -1;
[6] 1, -3, -8, 3, 9, 1, -1;
[7] 1, -5, -4, 15, 5, -11, -1, 1;
[8] 1, -4, -13, 8, 27, -3, -14, 1, 1;
[9] 1, -6, -8, 29, 15, -42, -6, 18, -1, -1;
[10] 1, -5, -19, 17, 60, -19, -63, 9, 21, -1, -1;
[11] 1, -7, -13, 49, 35, -110, -29, 93, 6, -25, -1, 1;
[12] 1, -6, -26, 31, 114, -58, -189, 45, 29, -10, -30, -1, 1;
...
For n=7 the n X n matrix M (dots for zeros):
[. . . . 1 . 1]
[. . . 1 . 1 1]
[. . 1 . 1 1 1]
[. 1 . 1 1 1 1]
[1 . 1 1 1 1 1]
[. 1 1 1 1 1 1]
[1 1 1 1 1 1 1]
has characteristic polynomial P(7) = det(t*I-M) = t^7 - 5*t^6 - 4*t^5 + 15*t^4 + 5*t^3 - 11*t^2 - t + 1 (which is irreducible over Q: an elementary check shows that P(7)(25) = 4849680601 is a prime and 25 >= 17 = 2 + max(abs([1,-5,-4,15,5,-11,-1,1]))).
PROG
(PARI)
P(n, t='t) = charpoly(matrix(n, n, i, j, (i+j > n) || (i+j)==n-1), t);
seq(N, t='t) = {
my(a=vector(N)); for (n=1, 4, a[n] = subst(P(n, 't), 't, t));
for (n=5, N,
a[n] += (2*t + 3*(-1)^(n%2))*a[n-1] - (t^2-4)*a[n-2];
a[n] += -(2*t + 3*(-1)^(n%2))*a[n-3] - a[n-4]);
a;
};
concat(1, concat(apply(p->Vec(p), seq(12))))
\\ test: N=100; vector(N, n, P(n)) == seq(N)
CROSSREFS
Cf. A047211.
Sequence in context: A136406 A242222 A247198 * A026568 A138361 A030408
KEYWORD
sign,tabl
AUTHOR
Gheorghe Coserea, May 30 2018
STATUS
approved