login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247198
Coefficients of L-series for elliptic curve "26a3": y^2 + x * y - y = x^3 + x or y^2 + x*y + y = x^3.
2
1, -1, 1, 1, -3, -1, -1, -1, -2, 3, 6, 1, 1, 1, -3, 1, -3, 2, 2, -3, -1, -6, 0, -1, 4, -1, -5, -1, 6, 3, -4, -1, 6, 3, 3, -2, -7, -2, 1, 3, 0, 1, -1, 6, 6, 0, 3, 1, -6, -4, -3, 1, 0, 5, -18, 1, 2, -6, -6, -3, 8, 4, 2, 1, -3, -6, 14, -3, 0, -3, -3, 2, 2, 7, 4
OFFSET
1,5
FORMULA
a(n) is multiplicative with a(2^e) = (-1)^e, a(13^e) = 1, else a(p^e) = a(p) * a(p^(e-1)) - p * a(p^(e-2)) where a(p) = p+1 minus number of points of elliptic curve modulo p including point at infinity.
G.f. is a period 1 Fourier series which satisfies f(-1 / (26 t)) = 26 (t / i)^2 f(t) where q = exp(2 Pi i t).
EXAMPLE
G.f. = q - q^2 + q^3 + q^4 - 3*q^5 - q^6 - q^7 - q^8 - 2*q^9 + 3*q^10 + ...
PROG
(PARI) {a(n) = if( n<1, 0, ellak( ellinit([ 1, 0, 1, 0, 0], 1), n))};
(PARI) {a(n) = if( n<1, 0, ellak( ellinit([ 1, 0, -1, 1, 0], 1), n))};
(Magma) A := Basis( CuspForms( Gamma0(26), 2), 76); A[1] - A[2];
(Sage)
def a(n):
return EllipticCurve("26a3").an(n) # Robin Visser, Sep 30 2023
CROSSREFS
Sequence in context: A030337 A136406 A242222 * A305319 A026568 A138361
KEYWORD
sign,mult
AUTHOR
Michael Somos, Nov 24 2014
STATUS
approved