login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247195
Expansion of -(sqrt(x^4-4*x^3-6*x^2-4*x+1) +x^2-2*x-1)/4.
1
0, 1, 1, 3, 9, 33, 129, 531, 2265, 9921, 44361, 201651, 929073, 4328865, 20362137, 96562659, 461169873, 2216134401, 10707788721, 51988771107, 253515373305, 1241069449377, 6097106216529, 30050252046195, 148541591990505, 736237012296897
OFFSET
0,4
LINKS
FORMULA
a(n) = Sum_{k=1..n-1} ( Sum_{i=0..n-k-1} 2^i*binomial(k,n-k-i-1)*binomial(k+i-1,k-1) )*binomial(n-k-1,k-1)/k, n>1, a(0)=0, a(1)=1.
D-finite with recurrence (n-2)*a(n)+(2-4*n)*a(n+1)+(-6-6*n)*a(n+2)+(-10-4*n)*a(n+3)+(n+4)*a(n+4)=0. - Robert Israel, Nov 26 2018
MAPLE
f:= gfun:-rectoproc({(n-2)*a(n)+(2-4*n)*a(n+1)+(-6-6*n)*a(n+2)+(-10-4*n)*a(n+3)+(n+4)*a(n+4)=0, a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 3, a(4) = 9}, a(n), remember):
map(f, [$0..30]); # Robert Israel, Nov 26 2018
MATHEMATICA
a[n_] := If[n == 1, 1, Sum[Sum[2^i*Binomial[k, n-k-i-1]*Binomial[k+i-1, k-1], {i, 0, n-k-1}]*Binomial[n-k-1, k-1]/k, {k, 1, n-1}]]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Nov 25 2014, translated from Maxima *)
CoefficientList[Series[-(Sqrt[x^4-4*x^3-6*x^2-4*x+1] + x^2-2*x-1)/4, {x, 0, 30}], x] (* G. C. Greubel, Nov 26 2018 *)
PROG
(Maxima)
a(n):=if n=1 then 1 else sum(((sum(2^i*binomial(k, n-k-i-1)*binomial(k+i-1, k-1), i, 0, n-k-1))*binomial(n-k-1, k-1))/k, k, 1, n-1);
(PARI) my(x='x+O('x^30)); concat([0], Vec(-(sqrt(x^4-4*x^3-6*x^2-4*x+1) +x^2-2*x-1)/4)) \\ G. C. Greubel, Nov 26 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); [0] cat Coefficients(R!( -(Sqrt(x^4-4*x^3-6*x^2-4*x+1) + x^2-2*x-1)/4 )); // G. C. Greubel, Nov 26 2018
(Sage) s=(-(sqrt(x^4-4*x^3-6*x^2-4*x+1) +x^2-2*x-1)/4).series(x, 30); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 26 2018
CROSSREFS
Sequence in context: A084508 A151043 A151044 * A236408 A217617 A320181
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 24 2014
STATUS
approved