login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247201
Numbers n whose reversal divides n+1.
2
1, 10, 41, 73, 100, 793, 1000, 7993, 9100, 9320, 10000, 73000, 79993, 100000, 340000, 735221, 799993, 1000000, 3070000, 7999993, 9382711, 9910000, 10000000, 73000000, 79000000, 79999993, 100000000, 361300000, 799999993, 1000000000, 1281010000
OFFSET
1,2
COMMENTS
Similar to A160946.
Sequence is infinite because any number of the form 10^k, for k integer, belongs to the sequence. In fact Rev(10^k)=1 and (10^k + 1) / 1 = 10^k + 1. Also concat(7,9…9,3) = 73, 793, 7993, 79993, etc. is part of the sequence: Rev(concat(7,9…9,3)) = concat(3,9…9,7) and concat(7,9…9,4) / concat(3,9…9,7) = 2.
EXAMPLE
Rev(1) = 1 and 2 / 1 = 2.
Rev(10) = 1 and 11 /1 = 11.
Rev(41) = 14 and 42 / 14 = 3.
Rev(73) = 37 and 74 / 37 = 2. Etc.
MAPLE
with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w;
for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end;
P:=proc(q) local n; for n from 1 to q do if type((n+1)/T(n), integer)
then print(n); fi; od; end: P(10^9);
PROG
(PARI) rev(n)=s=""; for(i=1, #(d=digits(n)), s=concat(d[i], s)); eval(s)
for(n=1, 10^5, if(!((n+1)%rev(n)), print1(n, ", "))) \\ Derek Orr, Nov 26 2014
CROSSREFS
Cf. A160946.
Sequence in context: A016082 A346346 A003355 * A022278 A246972 A266396
KEYWORD
nonn,base
AUTHOR
Paolo P. Lava, Nov 25 2014
STATUS
approved