Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Nov 26 2014 22:40:02
%S 1,10,41,73,100,793,1000,7993,9100,9320,10000,73000,79993,100000,
%T 340000,735221,799993,1000000,3070000,7999993,9382711,9910000,
%U 10000000,73000000,79000000,79999993,100000000,361300000,799999993,1000000000,1281010000
%N Numbers n whose reversal divides n+1.
%C Similar to A160946.
%C Sequence is infinite because any number of the form 10^k, for k integer, belongs to the sequence. In fact Rev(10^k)=1 and (10^k + 1) / 1 = 10^k + 1. Also concat(7,9…9,3) = 73, 793, 7993, 79993, etc. is part of the sequence: Rev(concat(7,9…9,3)) = concat(3,9…9,7) and concat(7,9…9,4) / concat(3,9…9,7) = 2.
%e Rev(1) = 1 and 2 / 1 = 2.
%e Rev(10) = 1 and 11 /1 = 11.
%e Rev(41) = 14 and 42 / 14 = 3.
%e Rev(73) = 37 and 74 / 37 = 2. Etc.
%p with(numtheory): T:=proc(w) local x, y, z; x:=0; y:=w;
%p for z from 1 to ilog10(w)+1 do x:=10*x+(y mod 10); y:=trunc(y/10); od; x; end;
%p P:=proc(q) local n; for n from 1 to q do if type((n+1)/T(n),integer)
%p then print(n); fi; od; end: P(10^9);
%o (PARI) rev(n)=s="";for(i=1,#(d=digits(n)),s=concat(d[i],s));eval(s)
%o for(n=1,10^5,if(!((n+1)%rev(n)),print1(n,", "))) \\ _Derek Orr_, Nov 26 2014
%Y Cf. A160946.
%K nonn,base
%O 1,2
%A _Paolo P. Lava_, Nov 25 2014