login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247200
Odd numbers which are neither of the form p*2^m + 1 nor of the form p*2^m - 1 with p prime.
0
71, 99, 101, 109, 131, 139, 155, 169, 181, 197, 199, 221, 229, 239, 241, 251, 259, 265, 281, 287, 289, 307, 309, 311, 323, 337, 339, 341, 349, 365, 371, 373, 379, 391, 401, 407, 409, 419, 431, 433, 439, 441, 443, 461, 469, 475, 485, 491, 493, 499, 505, 517, 519
OFFSET
1,1
COMMENTS
For each n, the sequence has a set of n consecutive odd numbers.
For any n, the number 2*A140077(n) + 1 is in the sequence.
Every number of the form S*2^n + 1 or R*2^n - 1 with n > 0, where S is a composite Sierpiński number and R is a composite Riesel number, is in the sequence.
Odd numbers n such that (n-1)/A007814(n-1) and (n+1)/A007814(n+1) are composite. - Robert Israel, Nov 19 2014
MAPLE
filter:= proc(n)
local m1, m2;
m1:= padic[ordp](n-1, 2);
if n-1 = 2^m1 then return false fi;
m2:= padic[ordp](n+1, 2);
n+1 <> 2^m2 and not isprime((n-1)/2^m1) and not isprime((n+1)/2^m2);
end proc:
select(filter, [seq(2*i+1, i=0..1000)]); # Robert Israel, Nov 19 2014
PROG
(Magma) lst1:=[]; lst2:=[]; r:=519; t:=Floor(Log(2, r))-1; for m in [0..t] do e:=Floor(r/2^m); for p in [2..e] do if IsPrime(p) then a:=p*2^m-1; b:=p*2^m+1; if not a in lst1 then Append(~lst1, a); end if; if not b in lst1 then Append(~lst1, b); end if; end if; end for; end for; for n in [3..r by 2] do if not n in lst1 then Append(~lst2, n); end if; end for; lst2;
(PARI) b=0; forstep(n=1, 519, 2, c=2^floor(log(n)/log(2)); a=b; b=(n+1)/gcd(n+1, c); if(a>8&&!isprime(a)&&!isprime(b), print1(n, ", ")));
CROSSREFS
Sequence in context: A118217 A023282 A155953 * A288907 A234962 A166252
KEYWORD
nonn
AUTHOR
STATUS
approved