This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247203 Primes p such that phi(p-2) = phi(p-1) and simultaneously Product_{d|(p-2)} phi(d) = Product_{d|(p-1)} phi(d) where phi(x) = Euler totient function (A000010). 2
 3, 5, 17, 257, 65537, 991172807 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes p such that A000010(p-2) = A000010(p-1) and simultaneously A029940(p-2) = A029940(p-1). The first 5 known Fermat primes (A019434) are terms of this sequence. Supersequence of A247164 and A248796. LINKS EXAMPLE 17 is in the sequence because phi(15) = phi(16) = 8 and simultaneously Product_{d|15} phi(d) = Product_{d|16} phi(d) = 64. PROG (MAGMA) [p: p in PrimesInInterval(3, 10^7) | (&*[EulerPhi(d): d in Divisors(p-2)]) eq (&*[EulerPhi(d): d in Divisors(p-1)]) and EulerPhi(p-2) eq EulerPhi(p-1)] (MAGMA) [n: n in [A248796(n)] | IsPrime(n) and EulerPhi(n-2) eq EulerPhi(n-1)] (MAGMA) [n: n in [A247164(n)] | IsPrime(n) and EulerPhi(n-2) eq EulerPhi(n-1)] CROSSREFS Cf. A000010, A029940, A247164, A248796. Sequence in context: A254576 A232720 A272061 * A262534 A000215 A263539 Adjacent sequences:  A247200 A247201 A247202 * A247204 A247205 A247206 KEYWORD nonn,more AUTHOR Jaroslav Krizek, Nov 25 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 04:33 EDT 2019. Contains 328026 sequences. (Running on oeis4.)