login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247202
Smallest odd k > 1 such that k*2^n - 1 is a prime number.
3
3, 3, 3, 3, 7, 3, 3, 5, 7, 5, 3, 5, 9, 5, 9, 17, 7, 3, 51, 17, 7, 33, 13, 39, 57, 11, 21, 27, 7, 213, 15, 5, 31, 3, 25, 17, 21, 3, 25, 107, 15, 33, 3, 35, 7, 23, 31, 5, 19, 11, 21, 65, 147, 5, 3, 33, 51, 77, 45, 17, 69, 53, 9, 3, 67, 63, 43, 63, 51, 27, 73, 5
OFFSET
1,1
COMMENTS
Limit_{N->oo} (Sum_{n=1..N} a(n))/(Sum_{n=1..N} n) = log(2). [[Is there a proof or is this a conjecture? - Peter Luschny, Feb 06 2015]]
Records: 3, 7, 9, 17, 51, 57, 213, 255, 267, 321, 615, 651, 867, 901, 909, 1001, 1255, 1729, 1905, 2163, 3003, 3007, 3515, 3797, 3825, 4261, 4335, 5425, 5717, 6233, 6525, 6763, 11413, 11919, 12935, 20475, 20869, 25845, 30695, 31039, 31309, 42991, 55999, ... . - Robert G. Wilson v, Feb 08 2015
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..10031 (first 5000 terms from Pierre CAMI)
FORMULA
a(A002235(n)) = 3.
MAPLE
f:= proc(n)
local k, p;
p:= 2^n;
for k from 3 by 2 do if isprime(k*p-1) then return k fi od;
end proc:
seq(f(n), n=1 .. 100); # Robert Israel, Feb 05 2015
MATHEMATICA
f[n_] := Block[{k = 3, p = 2^n}, While[ !PrimeQ[k*p - 1], k += 2]; k]; Array[f, 70]
PROG
(PFGW & SCRIPT)
SCRIPT
DIM k
DIM n, 0
DIMS t
OPENFILEOUT myf, a(n).txt
LABEL loop1
SET n, n+1
SET k, 1
LABEL loop2
SET k, k+2
SETS t, %d, %d\,; n; k
PRP k*2^n-1, t
IF ISPRP THEN GOTO a
GOTO loop2
LABEL a
WRITE myf, t
GOTO loop1
(PARI) a(n) = {k=3; while (!isprime(k*2^n-1), k+=2); k; } \\ Michel Marcus, Nov 25 2014
CROSSREFS
Sequence in context: A263137 A320846 A277515 * A195758 A304684 A079084
KEYWORD
nonn
AUTHOR
Pierre CAMI, Nov 25 2014
STATUS
approved