login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166252
Primes which are not the smallest or largest prime in an interval of the form (2*prime(k),2*prime(k+1)).
10
71, 101, 109, 151, 181, 191, 229, 233, 239, 241, 269, 283, 311, 349, 373, 409, 419, 433, 439, 491, 571, 593, 599, 601, 607, 643, 647, 653, 659, 683, 727, 823, 827, 857, 941, 947, 991, 1021, 1031, 1033, 1051, 1061, 1063, 1091, 1103, 1301, 1373, 1427, 1429
OFFSET
1,1
COMMENTS
Called "central primes" in A166251, not to be confused with the central polygonal primes A055469.
The primes tabulated in intervals (2*prime(k),2*prime(k+1)) are
5, k=1
7, k=2
11,13, k=3
17,19, k=4
23, k=5
29,31, k=6
37, k=7
41,43, k=8
47,53, k=9
59,61, k=10
67,71,73, k=11
79, k=12
83, k=13
89, k=14
97,101,103, k=15
and only rows with at least 3 primes contribute primes to the current sequence.
For n >= 2, these are numbers of A164368 which are in A194598. - Vladimir Shevelev, Apr 27 2012
EXAMPLE
Since 2*31 < 71 < 2*37 and the interval (62, 74) contains prime 67 < 71 and prime 73 > 71, then 71 is in the sequence.
MATHEMATICA
n = 0; t = {}; While[Length[t] < 100, n++; ps = Select[Range[2*Prime[n], 2*Prime[n+1]], PrimeQ]; If[Length[ps] > 2, t = Join[t, Rest[Most[ps]]]]]; t (* T. D. Noe, Apr 30 2012 *)
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Oct 10 2009, Oct 14 2009
STATUS
approved