|
|
A166254
|
|
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
|
|
1
|
|
|
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925220146, 950905221784425600, 40888924536728552592, 1758223755079252588512, 75603621468404628869424
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
|
|
FORMULA
|
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
|
|
MAPLE
|
seq(coeff(series((1+t)*(1-t^10)/(1-43*t+945*t^10-903*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
|
|
MATHEMATICA
|
CoefficientList[Series[(1+t)*(1-t^10)/(1-43*t+945*t^10-903*t^11), {t, 0, 30}], t] (* G. C. Greubel, May 08 2016 *)
coxG[{10, 903, -42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Apr 18 2018 *)
|
|
PROG
|
(Sage)
def A166254_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^10)/(1-43*t+945*t^10-903*t^11) ).list()
A166254_list(30) # G. C. Greubel, Aug 10 2019
|
|
CROSSREFS
|
Sequence in context: A164688 A165176 A165695 * A166438 A166723 A167097
Adjacent sequences: A166251 A166252 A166253 * A166255 A166256 A166257
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
John Cannon and N. J. A. Sloane, Dec 03 2009
|
|
STATUS
|
approved
|
|
|
|