login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166723
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733798162, 1758223755079553280288, 75603621468420789304176
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, -903).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^12 - 42*t^11 - 42*t^10 - 42*t^9 -42*t^8 -42*t^7 -42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
MATHEMATICA
CoefficientList[Series[(t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(903*t^12 - 42*t^11 - 42*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 24 2016 *)
coxG[{12, 903, -42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Aug 03 2023 *)
CROSSREFS
Sequence in context: A165695 A166254 A166438 * A167097 A167641 A167854
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved