|
|
A166253
|
|
String substitution 0 -> 01110, 1 -> 10001, started with 1.
|
|
1
|
|
|
1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Connected to the Koch curve by doing the following repeatedly: Go one step; turn left if there is 01 or 10 in S and right if there is 00 or 11 in S. Go to the next element of the sequence.
|
|
LINKS
|
Table of n, a(n) for n=1..135.
|
|
FORMULA
|
s(0)=0,1,1,1,0 and s(1)=1,0,0,0,1 Then S = lim s^n (n to infinity)
|
|
MATHEMATICA
|
s[0] = {0, 1, 1, 1, 0}; s[1] = {1, 0, 0, 0, 1}; sf[l_] := Module[{out = {}}, For[i = 1, i <= Length[l], i++, next = l[[i]]; AppendTo[out, s[next]]]; Return[Flatten[out]]] k = 7; e = {0}; For[m = 1, m <= k, m++, e = sf[e]]; e
Nest[Flatten[#/.{0->{0, 1, 1, 1, 0}, 1->{1, 0, 0, 0, 1}}]&, 1, 6] (* Harvey P. Dale, Jul 31 2021 *)
|
|
CROSSREFS
|
Sequence in context: A267868 A288733 A095111 * A159638 A187615 A120528
Adjacent sequences: A166250 A166251 A166252 * A166254 A166255 A166256
|
|
KEYWORD
|
nonn,uned
|
|
AUTHOR
|
Stephan Rosebrock (rosebrock(AT)ph-karlsruhe.de), Oct 10 2009
|
|
EXTENSIONS
|
a(25+) corrected by Ryan Hendrickson, Apr 10 2011
|
|
STATUS
|
approved
|
|
|
|