login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374041
a(n) = 1 if A276085(n) and A328768(n) are both multiples of 3, otherwise 0, where A276085 is the primorial base log-function, and A328768 is the first primorial based variant of arithmetic derivative.
2
1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
OFFSET
1
FORMULA
a(n) = A372573(n) * A373991(n).
a(n) = A372573(n) * [A007949(n) != 1], where [ ] is the Iverson bracket.
a(n) = A079978(A374031(n)).
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i, 1])-1)/f[i, 1]));
A374041(n) = (!(A276085(n)%3) && !(A328768(n)%3));
(PARI) A374041(n) = { my(v2 = valuation(n, 2), v3 = valuation(n, 3)); ((v3 != 1) && 0==((v2-v3)%3)); };
CROSSREFS
Characteristic function of A374042.
Sequence in context: A267679 A267868 A374043 * A288733 A095111 A166253
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 26 2024
STATUS
approved