login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372573
a(n) = 1 if A276085(n) is a multiple of 3, otherwise 0, where A276085 is the primorial base log-function.
13
1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1
OFFSET
1
COMMENTS
a(n) = 1 iff n is of the form 2^i * 3^j * k, with k in A007310 [i.e., gcd(k, 6) = 1], and i == j (mod 3).
FORMULA
a(n) = [A276085(n) == 0 (mod 3)], where [ ] is the Iverson bracket.
Sum_{k=1..n} a(k) ~ (43/91) * n. - Amiram Eldar, May 29 2024
a(n) = [A007814(n) == A007949(n) (mod 3)]. - Antti Karttunen, Nov 27 2024
MATHEMATICA
a[n_] := If[Divisible[Differences[IntegerExponent[n, {2, 3}]][[1]], 3], 1, 0]; Array[a, 100] (* Amiram Eldar, May 29 2024 *)
PROG
(PARI)
A002110(n) = prod(i=1, n, prime(i));
A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); };
A372573(n) = !(A276085(n)%3);
(PARI) A372573(n) = !((valuation(n, 2)-valuation(n, 3))%3);
CROSSREFS
Characteristic function of A339746.
Cf. A002110, A007310, A007814, A007949, A276085, A378443 (inverse Möbius transform).
Cf. also A369001.
Sequence in context: A303561 A284680 A004555 * A200261 A288855 A138711
KEYWORD
nonn,easy
AUTHOR
Antti Karttunen, May 26 2024
STATUS
approved