login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372574
a(n) = 1 if the squarefree part of n is congruent to 1 or 5 modulo 6, otherwise 0.
1
1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1
OFFSET
1
COMMENTS
a(n) = 1 iff A007913(n) is in A007310.
FORMULA
a(n) = A354354(A007913(n)).
Sum_{k=1..n} a(k) ~ n/2. - Amiram Eldar, May 27 2024
Multiplicative with a(p^e) = [e == 0 (mod 2)] if p <= 3 and a(p^e) = 1 if p > 3, where [ ] is the Iverson bracket.
MATHEMATICA
a[n_] := If[And @@ EvenQ[IntegerExponent[n, {2, 3}]], 1, 0]; Array[a, 100] (* Amiram Eldar, May 27 2024 *)
PROG
(PARI) A372574(n) = (1==gcd(core(n), 6));
(PARI) A372574(n) = { my(f = factor(n)); prod(k=1, #f~, if(f[k, 1]<=3, !(f[k, 2]%2), 1)); }; \\ Antti Karttunen, May 29 2024
CROSSREFS
Characteristic function of A339690.
Sequence in context: A373155 A078650 A285305 * A028863 A089012 A083035
KEYWORD
nonn,mult,easy
AUTHOR
Antti Karttunen, May 26 2024
STATUS
approved