login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285305
Fixed point of the morphism 0 -> 10, 1 -> 1001.
4
1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0
OFFSET
1
COMMENTS
This is a 3-automatic sequence. See Allouche et al. link. - Michel Dekking, Oct 05 2020
LINKS
J.-P. Allouche, F. M. Dekking, and M. Queffélec, Hidden automatic sequences, arXiv:2010.00920 [math.NT], 2020.
FORMULA
Conjecture: a(n) = A284775(n+1). - R. J. Mathar, May 08 2017
From Michel Dekking, Feb 20 2021: (Start)
Proof of this conjecture. Let mu: 0 -> 10, 1 -> 1001 be the defining morphism of (a(n)), and let tau: 0 -> 01, 1 -> 0011 be the defining morphism of A284775.
Since mu^n(0) starts with 1 for n>1, mu^n(0) tends to (a(n)) as n tends to infinity. So the conjecture will follow directly from the following claim.
CLAIM: 0 mu^n(0) = tau^n(0) 0 for n>0.
Proof: By induction over two levels, exploiting the obvious equality tau(1) = 0 tau(0) 1 to go from the third to the fourth line below.
For n=1: 0 mu(0)= 010 = tau(0) 0.
For n=2: 0 mu^2(0)= 0100110 = tau^2(0) 0.
Suppose true for n-1 and n. Then
tau^{n+1}(0) =
tau^n(tau(0)) =
tau^n(0) tau^n(1) =
tau^n(0) tau^{n-1)(0) tau^n(0) tau^{n-1}(1) =
0 mu^n(0)0^{-1} 0 mu^{n-1}(0)0^{-1}0mu^n(0)0^{-1}tau^{n-1)(1)=
0 mu^{n-1}(mu(0))mu^{n-1}(0)mu^{n-1}(mu(0))0^{-1}0tau^{n-)(1)=
0 mu^{n-1}(10) mu^{n-1}(0) mu^{n-1}(10) 0^{-1} tau^{n-1)(1) =
0 mu^{n-1}(1001) mu^{n-1}(0) 0^{-1} tau^{n-1)(1) =
0 mu^n(1) 0^{-1} tau^{n-1)(0) 0 0^{-1} tau^{n-1)(1) =
0 mu^n(1) 0^{-1} tau^{n-1}(01) =
0 mu^n(1) 0^{-1} tau^n(0) =
0 mu^n(1) mu^n(0) 0^{-1} =
0 mu^n(mu(0)) 0^{-1} =
0 mu^{n+1}(0) 0^{-1}.
So we proved 0 mu^{n+1}(0) = tau^{n+1}(0) 0.
(End)
EXAMPLE
0 -> 10-> 1001 -> 100110101001 ->
MATHEMATICA
s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 0, 1}}] &, {0}, 10]; (* A285305 *)
u = Flatten[Position[s, 0]]; (* A285306 *)
v = Flatten[Position[s, 1]]; (* A285307 *)
CROSSREFS
Partial sums of A284793.
Sequence in context: A068428 A373155 A078650 * A372574 A028863 A089012
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Apr 25 2017
STATUS
approved