login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A089012 a(n) = 1 if n is an exponent of the Weyl group W(E_6), 0 otherwise. 1
1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The exponents are 1, 4, 5, 7, 8, 11. The point of this sequence is that a similar generating function gives the exponents for any finite Coxeter group.

LINKS

Antti Karttunen, Table of n, a(n) for n = 1..1001

Index entries for characteristic functions

FORMULA

G.f.: (1-x^8)*(1-x^9)/((1-x^3)*(1-x^4)).

MATHEMATICA

CoefficientList[Series[(1 - x^8) (1 - x^9)/((1 - x^3) (1 - x^4)), {x, 0, 11}], x] (* Michael De Vlieger, Oct 10 2017 *)

PROG

(Scheme) (define (A089012 n) (if (member n '(1 4 5 7 8 11)) 1 0)) ;; Antti Karttunen, Oct 10 2017

CROSSREFS

Characteristic function of A005556.

Sequence in context: A078650 A285305 A028863 * A083035 A187074 A188398

Adjacent sequences:  A089009 A089010 A089011 * A089013 A089014 A089015

KEYWORD

easy,nonn

AUTHOR

Paul Boddington, Nov 03 2003

EXTENSIONS

More zeros from Antti Karttunen, Oct 10 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 07:38 EDT 2021. Contains 345395 sequences. (Running on oeis4.)