%I
%S 71,101,109,151,181,191,229,233,239,241,269,283,311,349,373,409,419,
%T 433,439,491,571,593,599,601,607,643,647,653,659,683,727,823,827,857,
%U 941,947,991,1021,1031,1033,1051,1061,1063,1091,1103,1301,1373,1427,1429
%N Primes which are not the smallest or largest prime in an interval of the form (2*prime(k),2*prime(k+1)).
%C Called "central primes" in A166251, not to be confused with the central polygonal primes A055469.
%C The primes tabulated in intervals (2*prime(k),2*prime(k+1)) are
%C 5, k=1
%C 7, k=2
%C 11,13, k=3
%C 17,19, k=4
%C 23, k=5
%C 29,31, k=6
%C 37, k=7
%C 41,43, k=8
%C 47,53, k=9
%C 59,61, k=10
%C 67,71,73, k=11
%C 79, k=12
%C 83, k=13
%C 89, k=14
%C 97,101,103, k=15
%C and only rows with at least 3 primes contribute primes to the current sequence.
%C For n >= 2, these are numbers of A164368 which are in A194598.  Vladimir Shevelev, Apr 27 2012
%H T. D. Noe, <a href="/A166252/b166252.txt">Table of n, a(n) for n = 1..1000</a>
%e Since 2*31 < 71 < 2*37 and the interval (62, 74) contains prime 67 < 71 and prime 73 > 71, then 71 is in the sequence.
%t n = 0; t = {}; While[Length[t] < 100, n++; ps = Select[Range[2*Prime[n], 2*Prime[n+1]], PrimeQ]; If[Length[ps] > 2, t = Join[t, Rest[Most[ps]]]]]; t (* _T. D. Noe_, Apr 30 2012 *)
%Y Cf. A166307, A166308, A166251, A164368, A104272, A080359, A164333, A164288, A164294, A164554, A194598.
%K nonn
%O 1,1
%A _Vladimir Shevelev_, Oct 10 2009, Oct 14 2009
