OFFSET
0,2
COMMENTS
A 3_2-Dyck path is a lattice path with steps (1, 3), (1, -1) that starts and ends at y = 0 and stays above the line y = -2.
For n = 1, there is no 2nd up step, a(1) = 6 enumerates the total number of down steps between the 1st up step and the end of the path.
LINKS
A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
FORMULA
a(0) = 0 and a(n) = 3*binomial(4*n, n)/(n+1) - binomial(4*n+2, n)/(n+1) + 9*binomial(4*(n-1), n-1)/n - 6*[n=1] for n > 0, where [ ] is the Iverson bracket.
EXAMPLE
For n = 1, the 3_2-Dyck paths are DDUD, DUDD, UDDD. This corresponds to a(1) = 1 + 2 + 3 = 6 down steps between the 1st up step and the end of the path.
MATHEMATICA
a[0] = 0; a[n_] := 3 * Binomial[4*n, n]/(n + 1) - Binomial[4*n + 2, n]/(n + 1) + 9 * Binomial[4*(n - 1), n - 1]/n - 6 * Boole[n == 1]; Array[a, 22, 0] (* Amiram Eldar, May 13 2020 *)
PROG
(SageMath) [3*binomial(4*n, n)/(n + 1) - binomial(4*n + 2, n)/(n + 1) + 9*binomial(4*(n - 1), n - 1)/n - 6*(n==1) if n > 0 else 0 for n in srange(30)] # Benjamin Hackl, May 13 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benjamin Hackl, May 13 2020
STATUS
approved