OFFSET
0,2
COMMENTS
A 3_2-Dyck path is a lattice path with steps U = (1, 3), d = (1, -1) that starts at (0,0), stays (weakly) above y = -2, and ends at the x-axis.
LINKS
A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
FORMULA
a(n) = 3*binomial(4*(n+1) + 3, n+1)/(4*(n+1) + 3) - 9*binomial(4*n+3, n)/(4*n + 3).
EXAMPLE
For n = 1, a(1) = 6 is the total number of down-steps after the last up-step in Uddd, dUdd, ddUd.
MATHEMATICA
a[n_] := 3 * Binomial[4*n + 7, n + 1]/(4*n + 7) - 9 * Binomial[4*n + 3, n]/(4*n + 3); Array[a, 21, 0] (* Amiram Eldar, May 13 2020 *)
PROG
(SageMath) [3*binomial(4*(n + 1) + 3, n + 1)/(4*(n + 1) + 3) - 9*binomial(4*n + 3, n)/(4*n + 3) for n in srange(30)] # Benjamin Hackl, May 13 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Andrei Asinowski, May 13 2020
STATUS
approved